Skip to content

Implementation of the paper: 'Robust mixture modelling using the t distribution', D. Peel and G. J. McLachlan.

License

Notifications You must be signed in to change notification settings

luiscarlosgph/t-Student-Mixture-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

93 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

t-Student-Mixture-Models

Build Status Documentation Status
Implementation of the paper: 'Robust mixture modelling using the t distribution', D. Peel and G. J. McLachlan.

  • Only Python >= 3.7 supported.
  • Code coverage: 76%.

Install with pip

$ python3 -m pip install smm --user

Install from source

$ git clone https://github.com/luiscarlosgph/t-Student-Mixture-Models.git
$ cd t-Student-Mixture-Models
$ python3 setup.py install --user

Usage

See example in src/example.py.

$ python3 src/example.py

Unit tests

To run the tests execute:

$ python3 setup.py test

Coverage

To run the coverage test:

$ python3 -m pip install coverage
$ python3 -m coverage run setup.py test
$ python3 -m coverage html

Then open 'htmlcov/index.html' and search for the line containing 'smm/smm.py'.

Documentation

See t-Student-Mixture-Models documentation.

Author

Luis Carlos Garcia-Peraza Herrera ([email protected]).

License

BSD 3-Clause License, see LICENSE file for more information.

About

Implementation of the paper: 'Robust mixture modelling using the t distribution', D. Peel and G. J. McLachlan.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages