Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Flow/train bsds300 #141

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions .eggs/README.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
This directory contains eggs that were downloaded by setuptools to build, test, and run plug-ins.

This directory caches those eggs to prevent repeated downloads.

However, it is safe to delete this directory.

4 changes: 3 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,6 @@ logs/
*__pycache__*
*.sh
datasets
basicsr.egg-info
basicsr.egg-info
.eggs/*
build/*
26 changes: 18 additions & 8 deletions basicsr/metrics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,20 @@
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
from copy import deepcopy

from basicsr.utils.registry import METRIC_REGISTRY
from .niqe import calculate_niqe
from .psnr_ssim import calculate_psnr, calculate_ssim, calculate_ssim_left, calculate_psnr_left, calculate_skimage_ssim, calculate_skimage_ssim_left
from .psnr_ssim import calculate_psnr, calculate_ssim

__all__ = ['calculate_psnr', 'calculate_ssim', 'calculate_niqe']


def calculate_metric(data, opt):
"""Calculate metric from data and options.

__all__ = ['calculate_psnr', 'calculate_ssim', 'calculate_niqe', 'calculate_ssim_left', 'calculate_psnr_left', 'calculate_skimage_ssim', 'calculate_skimage_ssim_left']
Args:
opt (dict): Configuration. It must contain:
type (str): Model type.
"""
opt = deepcopy(opt)
metric_type = opt.pop('type')
metric = METRIC_REGISTRY.get(metric_type)(**data, **opt)
return metric
41 changes: 11 additions & 30 deletions basicsr/metrics/fid.py
Original file line number Diff line number Diff line change
@@ -1,35 +1,22 @@
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from scipy import linalg
from tqdm import tqdm

from basicsr.models.archs.inception import InceptionV3
from basicsr.archs.inception import InceptionV3


def load_patched_inception_v3(device='cuda',
resize_input=True,
normalize_input=False):
def load_patched_inception_v3(device='cuda', resize_input=True, normalize_input=False):
# we may not resize the input, but in [rosinality/stylegan2-pytorch] it
# does resize the input.
inception = InceptionV3([3],
resize_input=resize_input,
normalize_input=normalize_input)
inception = InceptionV3([3], resize_input=resize_input, normalize_input=normalize_input)
inception = nn.DataParallel(inception).eval().to(device)
return inception


@torch.no_grad()
def extract_inception_features(data_generator,
inception,
len_generator=None,
device='cuda'):
def extract_inception_features(data_generator, inception, len_generator=None, device='cuda'):
"""Extract inception features.

Args:
Expand Down Expand Up @@ -63,33 +50,27 @@ def extract_inception_features(data_generator,
def calculate_fid(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.

The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is:
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.

Args:
mu1 (np.array): The sample mean over activations.
sigma1 (np.array): The covariance matrix over activations for
generated samples.
mu2 (np.array): The sample mean over activations, precalculated on an
representative data set.
sigma2 (np.array): The covariance matrix over activations,
precalculated on an representative data set.
sigma1 (np.array): The covariance matrix over activations for generated samples.
mu2 (np.array): The sample mean over activations, precalculated on an representative data set.
sigma2 (np.array): The covariance matrix over activations, precalculated on an representative data set.

Returns:
float: The Frechet Distance.
"""
assert mu1.shape == mu2.shape, 'Two mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, (
'Two covariances have different dimensions')
assert sigma1.shape == sigma2.shape, ('Two covariances have different dimensions')

cov_sqrt, _ = linalg.sqrtm(sigma1 @ sigma2, disp=False)

# Product might be almost singular
if not np.isfinite(cov_sqrt).all():
print('Product of cov matrices is singular. Adding {eps} to diagonal '
'of cov estimates')
print('Product of cov matrices is singular. Adding {eps} to diagonal of cov estimates')
offset = np.eye(sigma1.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sigma1 + offset) @ (sigma2 + offset))

Expand Down
12 changes: 2 additions & 10 deletions basicsr/metrics/metric_util.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,6 @@
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
import numpy as np

from basicsr.utils.matlab_functions import bgr2ycbcr
from basicsr.utils import bgr2ycbcr


def reorder_image(img, input_order='HWC'):
Expand All @@ -27,9 +21,7 @@ def reorder_image(img, input_order='HWC'):
"""

if input_order not in ['HWC', 'CHW']:
raise ValueError(
f'Wrong input_order {input_order}. Supported input_orders are '
"'HWC' and 'CHW'")
raise ValueError(f"Wrong input_order {input_order}. Supported input_orders are 'HWC' and 'CHW'")
if len(img.shape) == 2:
img = img[..., None]
if input_order == 'CHW':
Expand Down
78 changes: 33 additions & 45 deletions basicsr/metrics/niqe.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,17 @@
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
import cv2
import math
import numpy as np
from scipy.ndimage.filters import convolve
import os
from scipy.ndimage import convolve
from scipy.special import gamma

from basicsr.metrics.metric_util import reorder_image, to_y_channel
from basicsr.utils.matlab_functions import imresize
from basicsr.utils.registry import METRIC_REGISTRY


def estimate_aggd_param(block):
"""Estimate AGGD (Asymmetric Generalized Gaussian Distribution) paramters.
"""Estimate AGGD (Asymmetric Generalized Gaussian Distribution) parameters.

Args:
block (ndarray): 2D Image block.
Expand All @@ -26,15 +23,13 @@ def estimate_aggd_param(block):
block = block.flatten()
gam = np.arange(0.2, 10.001, 0.001) # len = 9801
gam_reciprocal = np.reciprocal(gam)
r_gam = np.square(gamma(gam_reciprocal * 2)) / (
gamma(gam_reciprocal) * gamma(gam_reciprocal * 3))
r_gam = np.square(gamma(gam_reciprocal * 2)) / (gamma(gam_reciprocal) * gamma(gam_reciprocal * 3))

left_std = np.sqrt(np.mean(block[block < 0]**2))
right_std = np.sqrt(np.mean(block[block > 0]**2))
gammahat = left_std / right_std
rhat = (np.mean(np.abs(block)))**2 / np.mean(block**2)
rhatnorm = (rhat * (gammahat**3 + 1) *
(gammahat + 1)) / ((gammahat**2 + 1)**2)
rhatnorm = (rhat * (gammahat**3 + 1) * (gammahat + 1)) / ((gammahat**2 + 1)**2)
array_position = np.argmin((r_gam - rhatnorm)**2)

alpha = gam[array_position]
Expand Down Expand Up @@ -70,22 +65,18 @@ def compute_feature(block):
return feat


def niqe(img,
mu_pris_param,
cov_pris_param,
gaussian_window,
block_size_h=96,
block_size_w=96):
def niqe(img, mu_pris_param, cov_pris_param, gaussian_window, block_size_h=96, block_size_w=96):
"""Calculate NIQE (Natural Image Quality Evaluator) metric.

Ref: Making a "Completely Blind" Image Quality Analyzer.
``Paper: Making a "Completely Blind" Image Quality Analyzer``

This implementation could produce almost the same results as the official
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip

Note that we do not include block overlap height and width, since they are
always 0 in the official implementation.

For good performance, it is advisable by the official implemtation to
For good performance, it is advisable by the official implementation to
divide the distorted image in to the same size patched as used for the
construction of multivariate Gaussian model.

Expand All @@ -104,8 +95,7 @@ def niqe(img,
block_size_w (int): Width of the blocks in to which image is divided.
Default: 96 (the official recommended value).
"""
assert img.ndim == 2, (
'Input image must be a gray or Y (of YCbCr) image with shape (h, w).')
assert img.ndim == 2, ('Input image must be a gray or Y (of YCbCr) image with shape (h, w).')
# crop image
h, w = img.shape
num_block_h = math.floor(h / block_size_h)
Expand All @@ -115,32 +105,22 @@ def niqe(img,
distparam = [] # dist param is actually the multiscale features
for scale in (1, 2): # perform on two scales (1, 2)
mu = convolve(img, gaussian_window, mode='nearest')
sigma = np.sqrt(
np.abs(
convolve(np.square(img), gaussian_window, mode='nearest') -
np.square(mu)))
sigma = np.sqrt(np.abs(convolve(np.square(img), gaussian_window, mode='nearest') - np.square(mu)))
# normalize, as in Eq. 1 in the paper
img_nomalized = (img - mu) / (sigma + 1)

feat = []
for idx_w in range(num_block_w):
for idx_h in range(num_block_h):
# process ecah block
block = img_nomalized[idx_h * block_size_h //
scale:(idx_h + 1) * block_size_h //
scale, idx_w * block_size_w //
scale:(idx_w + 1) * block_size_w //
scale]
block = img_nomalized[idx_h * block_size_h // scale:(idx_h + 1) * block_size_h // scale,
idx_w * block_size_w // scale:(idx_w + 1) * block_size_w // scale]
feat.append(compute_feature(block))

distparam.append(np.array(feat))
# TODO: matlab bicubic downsample with anti-aliasing
# for simplicity, now we use opencv instead, which will result in
# a slight difference.

if scale == 1:
h, w = img.shape
img = cv2.resize(
img / 255., (w // 2, h // 2), interpolation=cv2.INTER_LINEAR)
img = imresize(img / 255., scale=0.5, antialiasing=True)
img = img * 255.

distparam = np.concatenate(distparam, axis=1)
Expand All @@ -154,20 +134,25 @@ def niqe(img,
# compute niqe quality, Eq. 10 in the paper
invcov_param = np.linalg.pinv((cov_pris_param + cov_distparam) / 2)
quality = np.matmul(
np.matmul((mu_pris_param - mu_distparam), invcov_param),
np.transpose((mu_pris_param - mu_distparam)))
quality = np.sqrt(quality)
np.matmul((mu_pris_param - mu_distparam), invcov_param), np.transpose((mu_pris_param - mu_distparam)))

quality = np.sqrt(quality)
quality = float(np.squeeze(quality))
return quality


def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y'):
@METRIC_REGISTRY.register()
def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y', **kwargs):
"""Calculate NIQE (Natural Image Quality Evaluator) metric.

Ref: Making a "Completely Blind" Image Quality Analyzer.
``Paper: Making a "Completely Blind" Image Quality Analyzer``

This implementation could produce almost the same results as the official
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip

> MATLAB R2021a result for tests/data/baboon.png: 5.72957338 (5.7296)
> Our re-implementation result for tests/data/baboon.png: 5.7295763 (5.7296)

We use the official params estimated from the pristine dataset.
We use the recommended block size (96, 96) without overlaps.

Expand All @@ -181,15 +166,15 @@ def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y'):
pixels are not involved in the metric calculation.
input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'.
Default: 'HWC'.
convert_to (str): Whether coverted to 'y' (of MATLAB YCbCr) or 'gray'.
convert_to (str): Whether converted to 'y' (of MATLAB YCbCr) or 'gray'.
Default: 'y'.

Returns:
float: NIQE result.
"""

ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
# we use the official params estimated from the pristine dataset.
niqe_pris_params = np.load('basicsr/metrics/niqe_pris_params.npz')
niqe_pris_params = np.load(os.path.join(ROOT_DIR, 'niqe_pris_params.npz'))
mu_pris_param = niqe_pris_params['mu_pris_param']
cov_pris_param = niqe_pris_params['cov_pris_param']
gaussian_window = niqe_pris_params['gaussian_window']
Expand All @@ -206,6 +191,9 @@ def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y'):
if crop_border != 0:
img = img[crop_border:-crop_border, crop_border:-crop_border]

# round is necessary for being consistent with MATLAB's result
img = img.round()

niqe_result = niqe(img, mu_pris_param, cov_pris_param, gaussian_window)

return niqe_result
Loading