Skip to content
/ DSRNet Public

Official implementation for "Single Image Reflection Separation via Component Synergy"

License

Notifications You must be signed in to change notification settings

mingcv/DSRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

7953e40 Â· Sep 8, 2024

History

53 Commits
Apr 30, 2024
Sep 8, 2024
Sep 8, 2024
Aug 20, 2023
Aug 20, 2023
Aug 28, 2023
Aug 12, 2023
Aug 4, 2024
Aug 20, 2023
May 1, 2024
May 1, 2024
May 18, 2024
Aug 29, 2023
Jul 22, 2024
Apr 30, 2024
Apr 30, 2024

Repository files navigation

DSRNet: Single Image Reflection Separation via Component Synergy (ICCV 2023)

📖 [ICCV] [Arxiv] [Supp.]
Qiming Hu, Xiaojie Guo
College of Intelligence and Computing, Tianjin University

Network Architecture

fig_arch

Environment Preparation (Python 3.9)

pip install -r requirements.txt

Data Preparation

Training dataset

  • 7,643 images from the Pascal VOC dataset, center-cropped as 224 x 224 slices to synthesize training pairs;
  • 90 real-world training pairs provided by Zhang et al.;
  • 200 real-world training pairs provided by IBCLN (In our training setting 2, † labeled in our paper).

Testing dataset

  • 45 real-world testing images from CEILNet dataset;
  • 20 real testing pairs provided by Zhang et al.;
  • 20 real testing pairs provided by IBCLN;
  • 454 real testing pairs from SIR^2 dataset, containing three subsets (i.e., Objects (200), Postcard (199), Wild (55)).

Download all in one by Google Drive or 百度云.

Usage

Training

Setting I (w/o Nature): python train_sirs.py --inet dsrnet_l --model dsrnet_model_sirs --dataset sirs_dataset --loss losses --name dsrnet_l --lambda_vgg 0.01 --lambda_rec 0.2 --if_align --seed 2018 --base_dir "[YOUR DATA DIR]"

Setting II (w/ Nature): python train_sirs_4000.py --inet dsrnet_l_nature --model dsrnet_model_sirs --dataset sirs_dataset --loss losses --name dsrnet_l_4000 --lambda_vgg 0.01 --lambda_rec 0.2 --if_align --seed 2018 --base_dir "[YOUR DATA DIR]"

Evaluation

Setting I (w/o Nature): python eval_sirs.py --inet dsrnet_l --model dsrnet_model_sirs --dataset sirs_dataset --name dsrnet_l_test --if_align --resume --weight_path "./weights/dsrnet_l_epoch18.pt" --base_dir "[YOUR_DATA_DIR]"

Setting II (w/ Nature): python eval_sirs_4000.py --inet dsrnet_l_nature --model dsrnet_model_sirs --dataset sirs_dataset --name dsrnet_l_4000_test --if_align --resume --weight_path "./weights/dsrnet_l_4000_epoch33.pt" --base_dir "[YOUR_DATA_DIR]"

More commands can be found in scripts.sh.

Testing

Setting I (w/o Nature): python test_sirs.py --inet dsrnet_l --model dsrnet_model_sirs --dataset sirs_dataset --name dsrnet_l_test --hyper --if_align --resume --weight_path "./weights/dsrnet_l_epoch18.pt" --base_dir "[YOUR_DATA_DIR]"

Setting II (w/ Nature): python test_sirs.py --inet dsrnet_l_nature --model dsrnet_model_sirs --dataset sirs_dataset --name dsrnet_l_4000_test --hyper --if_align --resume --weight_path "./weights/dsrnet_l_4000_epoch33.pt" --base_dir "[YOUR_DATA_DIR]"

Trained weights

Download the trained weights by Google Drive or 百度云 and drop them into the "weights" dir.

image

Visual comparison on real20 and SIR^2

image

Impressive Restoration Quality of Reflection Layers

image

About

Official implementation for "Single Image Reflection Separation via Component Synergy"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published