-
-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
72 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,47 +1,112 @@ | ||
context("PipeOpColRoles") | ||
|
||
test_that("PipeOpColRoles - basic properties", { | ||
|
||
op = PipeOpColRoles$new() | ||
task = mlr_tasks$get("iris") | ||
|
||
expect_pipeop(op) | ||
expect_equal(task, train_pipeop(op, inputs = list(task))$output) | ||
expect_equal(task, predict_pipeop(op, inputs = list(task))$output) | ||
|
||
expect_datapreproc_pipeop_class(PipeOpColRoles, task = task) | ||
|
||
}) | ||
|
||
test_that("PipeOpColRoles - assertion works", { | ||
test_that("PipeOpColRoles - only correct roles are accepted", { | ||
|
||
expect_error(PipeOpColRoles$new(param_vals = list(new_role = "wrong")), regexp = "list") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role = list(a = "wrong", b = NA))), regexp = "character") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role = list(a = "wrong", b = "target"))), regexp = "subset") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role = list(a = "wrong"))), regexp = "subset") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role = list(a = "target"))), regexp = "subset") | ||
|
||
expect_error(PipeOpColRoles$new(param_vals = list(new_role_direct = "wrong")), regexp = "list") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role_direct = list(wrong = "x", feature = NA))), regexp = "character") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role_direct = list(wrong = "x"))), regexp = "subset") | ||
expect_error(PipeOpColRoles$new(param_vals = list(new_role_direct = list(target = "y"))), regexp = "subset") | ||
|
||
# test that no duplicates for group, name, weight? (error during init) | ||
|
||
# test that roles are correct for task types? (error during training) | ||
|
||
}) | ||
|
||
test_that("PipeOpColRoles - name checking works", { | ||
test_that("PipeOpColRoles - only existing columns are accepted", { | ||
|
||
task = mlr_tasks$get("iris") | ||
task$cbind(data.table(rn = sprintf("%03d", 1:150))) | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role = list(rn = "name", wrong = "feature"))) | ||
expect_error(train_pipeop(op, inputs = list(task)), regexp = "subset") | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role_direct = list(name = "rn", feature = "wrong"))) | ||
expect_error(train_pipeop(op, inputs = list(task)), regexp = "subset") | ||
|
||
}) | ||
|
||
test_that("PipeOpColRoles - changing the role of a target fails", { | ||
|
||
task = mlr_tasks$get("iris") | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role = list(Species = "feature"))) | ||
expect_error(train_pipeop(op, inputs = list(task)), regexp = "role of a target") | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role_direct = list(feature = "Species"))) | ||
expect_error(train_pipeop(op, inputs = list(task)), regexp = "role of a target") | ||
|
||
}) | ||
|
||
test_that("PipeOpColRoles - functionality works", { | ||
test_that("PipeOpColRoles - new_role works", { | ||
|
||
task = mlr_tasks$get("iris") | ||
task$cbind(data.table(rn = sprintf("%03d", 1:150))) | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role = list(rn = "name", Petal.Length = "order", Petal.Width = character(0)))) | ||
train_out = train_pipeop(op, inputs = list(task))$output | ||
|
||
train_out = train_pipeop(op, inputs = list(task))[[1L]] | ||
|
||
col_roles_actual = train_out$col_roles | ||
col_roles_expected = list( | ||
feature = c("Sepal.Length", "Sepal.Width"), target = "Species", name = "rn", | ||
order = "Petal.Length", stratum = character(0), group = character(0), weight = character(0)) | ||
order = "Petal.Length", stratum = character(0), group = character(0), weight = character(0) | ||
) | ||
|
||
# this does nothing? | ||
if ("weights_learner" %in% names(task)) names(col_roles_expected)[names(col_roles_expected) == "weight"] = "weights_learner" | ||
|
||
expect_equal(train_out$col_roles[names(col_roles_expected)], col_roles_expected) | ||
expect_equal(train_out$row_names$row_name, task$data(cols = "rn")[[1L]]) | ||
expect_true("Petal.Width" %nin% colnames(train_out$data())) | ||
predict_out = predict_pipeop(op, inputs = list(task))$output | ||
|
||
predict_out = predict_pipeop(op, inputs = list(task))[[1L]] | ||
expect_equal(train_out, predict_out) | ||
}) | ||
|
||
test_that("PipeOpColRoles - new_role_direct works", { | ||
|
||
task = mlr_tasks$get("iris") | ||
task$cbind(data.table(rn = sprintf("%03d", 1:150))) | ||
|
||
op = PipeOpColRoles$new(param_vals = list(new_role_direct = list( | ||
name = "rn", order = "Petal.Length", feature = character(0)))) | ||
|
||
train_out = train_pipeop(op, inputs = list(task))[[1L]] | ||
|
||
col_roles_actual = train_out$col_roles | ||
col_roles_expected = list( | ||
feature = character(0), target = "Species", name = "rn", | ||
order = "Petal.Length", stratum = character(0), group = character(0), weight = character(0) | ||
) | ||
|
||
# ask whether necessary | ||
# if ("weights_learner" %in% names(task)) names(col_roles_expected)[names(col_roles_expected) == "weight"] = "weights_learner" | ||
|
||
expect_equal(train_out$col_roles[names(col_roles_expected)], col_roles_expected) | ||
expect_equal(train_out$row_names$row_name, task$data(cols = "rn")[[1L]]) | ||
expect_equal(train_out$data(), task$data(cols = "Species")) | ||
|
||
predict_out = predict_pipeop(op, inputs = list(task))[[1L]] | ||
expect_equal(train_out, predict_out) | ||
}) | ||
|
||
# if we keep behavior with NULL, add tests |