Skip to content

Commit

Permalink
Add support for almostEqual
Browse files Browse the repository at this point in the history
This was a useful std/math function that we did not support yet.
  • Loading branch information
AngelEzquerra committed Apr 28, 2024
1 parent 9638cd5 commit ddeb0bf
Show file tree
Hide file tree
Showing 2 changed files with 52 additions and 0 deletions.
34 changes: 34 additions & 0 deletions src/arraymancer/tensor/math_functions.nim
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,40 @@ proc classify*[T: SomeFloat](t: Tensor[T]): Tensor[FloatClass] {.noinit.} =
## - fcNegInf: value is negative infinity
t.map_inline(classify(x))

proc almostEqual*[T: SomeFloat | Complex32 | Complex64](t1, t2: Tensor[T],
unitsInLastPlace: Natural = 4): Tensor[bool] {.noinit.} =
## Element-wise almostEqual function
##
## Checks whether pairs of elements of two tensors are almost equal, using
## the [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
##
## For more details check the section covering the `almostEqual` procedure in
## nim's standard library documentation.
##
## Inputs:
## - t1, t2: Input (floating point or complex) tensors of the same shape.
## - unitsInLastPlace: The max number of
## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
## difference tolerated when comparing two numbers. The
## larger the value, the more error is allowed. A `0`
## value means that two numbers must be exactly the
## same to be considered equal.
##
## Result:
## - A new boolean tensor of the same shape as the inputs, in which elements
## are true if the two values in the same position on the two input tensors
## are almost equal (and false if they are not).
##
## Note:
## - You can combine this function with `all` to check if two real tensors
## are almost equal.
map2_inline(t1, t2):
when T is Complex:
almostEqual(x.re, y.re, unitsInLastPlace=unitsInLastPlace) and
almostEqual(x.im, y.im, unitsInLastPlace=unitsInLastPlace)
else:
almostEqual(x, y, unitsInLastPlace=unitsInLastPlace)

type ConvolveMode* = enum full, same, valid

proc convolveImpl[T: SomeNumber | Complex32 | Complex64](
Expand Down
18 changes: 18 additions & 0 deletions tests/tensor/test_math_functions.nim
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,24 @@ proc main() =
check: expected_isNaN == a.isNaN
check: expected_classification == a.classify

test "almostEqual":
block: # Real
let t1 = arange(1.0, 5.0)
let t2 = t1.clone()
check: all(almostEqual(t1, t2)) == true
var t3 = t1.clone()
t3[0] += 2e-15
check: almostEqual(t1, t3) == [false, true, true, true].toTensor()
check: all(almostEqual(t1, t3, unitsInLastPlace = 5)) == true
block: # Complex
let t1 = complex(arange(1.0, 5.0), arange(1.0, 5.0))
let t2 = t1.clone()
check: all(almostEqual(t1, t2)) == true
var t3 = t1.clone()
t3[0] += complex(2e-15)
check: almostEqual(t1, t3) == [false, true, true, true].toTensor()
check: all(almostEqual(t1, t3, unitsInLastPlace = 5)) == true

test "1-D convolution":
block:
let a = arange(4)
Expand Down

0 comments on commit ddeb0bf

Please sign in to comment.