This repository contains the tutorial material for the Nextflow training at GCC/BOSC 2018.
A workflow engine for data analysis pipelines with a string focus on:
- Portability
- Reproducibility
- Scalability
- Usability
How?
- Functional/reactive programming model
- Decoupling and tasks isolation
- Concise DSL for recurrent task operations
- Pragmatic, allows quick prototyping and iterations
- Hide complexity
- Coexists with errors (!)
- Unix-like OS (Linux, macOS, etc.)
- Java 8 or later
- Docker engine 1.10.x (or later)
- Singularity 2.3.x (or later, optional)
- AWS Batch computing environment properly configured (optional)
- Graphviz (optional)
Install Nextflow by using the following command:
curl -fsSL https://get.nextflow.io | bash
The above snippet creates the nextflow
launcher in the current directory.
Complete the installation moving it into a directory in your PATH
environment variable, e.g.:
mv nextflow $HOME/bin
Nextflow is also available through Bioconda. Having the Conda package manager installed in your computer, install Nextflow with this command:
conda install nextflow
Finally, clone this repository with the following command:
git clone https://github.com/nextflow-io/gccbosc18-training.git && cd gccbosc18-training
During this tutorial you will implement a proof of concept of a RNA-Seq pipeline which:
- Indexes a trascriptome file.
- Performs quality controls
- Performs quantification.
- Create a MultiqQC report.
The script script1.nf
defines the pipeline input parameters. Run it by using the
following command:
nextflow run script1.nf
Try to specify a different input parameter, for example:
nextflow run script1.nf --reads this/and/that
Modify the script1.nf
adding a fourth parameter named outdir
and set it to a default path
that will be used as the pipeline output directory.
Modify the script1.nf
to print all the pipeline parameters by using a single println
command and a multiline string
statement.
Tip: see an example here.
In this step you have learned:
- How to define parameters in your pipeline script
- How to pass parameters by using the command line
- The use of
$var
and${var}
variable placeholders - How to use multiline strings
Nextflow allows the execution of any command or user script by using a process
definition.
A process is defined by providing three main declarations: the process inputs, the process outputs and finally the command script.
The second example adds the index
process. Open it to see how the process is defined.
It takes the transcriptome file as input and creates the transcriptome index by using the salmon
tool.
Note how the input declaration defines a transcriptome
variable in the process context
that it is used in the command script to reference that file in the Salmon command line.
Try to run it by using the command:
nextflow run script2.nf
The execution will fail because Salmon is not installed in your environment.
Add the command line option -with-docker
to launch the execution through a Docker container
as shown below:
nextflow run script2.nf -with-docker
This time it works because it uses the Docker container nextflow/rnaseq-nf
defined in the
nextflow.config
file.
In order to avoid to add the option -with-docker
add the following line in the nextflow.config
file:
docker.enabled = true
Enable the Docker execution by default adding the above setting in the nextflow.config
file.
Print the output of the index_ch
channel by using the println
operator (do not confuse it with the println
statement seen previously).
Use the command tree -a work
to see how Nextflow organises the process work directory.
In this step you have learned:
- How to define a process executing a custom command
- How process inputs are declared
- How process outputs are declared
- How to access the number of available CPUs
- How to print the content of a channel
This step shows how to match read files into pairs, so they can be mapped by Salmon.
Edit the script script3.nf
and add the following statement as the last line:
read_pairs_ch.println()
Save it and execute it with the following command:
nextflow run script3.nf
It will print an output similar to the one shown below:
[ggal_gut, [/.../data/ggal/gut_1.fq, /.../data/ggal/gut_2.fq]]
The above example shows how the read_pairs_ch
channel emits tuples composed by
two elements, where the first is the read pair prefix and the second is a list
representing the actual files.
Try it again specifying different read files by using a glob pattern:
nextflow run script3.nf --reads 'data/ggal/*_{1,2}.fq'
Use the set operator in place
of =
assignment to define the read_pairs_ch
channel.
Use the ifEmpty operator
to check if the read_pairs_ch
contains at least an item.
In this step you have learned:
- How to use
fromFilePairs
to handle read pair files - How to use the
set
operator to define a new channel variable - How to use the
ifEmpty
operator to check if a channel is empty
The script script4.nf
adds the quantification
process.
In this script note as the index_ch
channel, declared as output in the index
process,
is now used as a channel in the input section.
Also note as the second input is declared as a set
composed by two elements:
the pair_id
and the reads
in order to match the structure of the items emitted
by the read_pairs_ch
channel.
Execute it by using the following command:
nextflow run script4.nf -resume
You will see the execution of the quantification
process.
The -resume
option cause the execution of any step that has been already processed to be skipped.
Try to execute it with more read files as shown below:
nextflow run script4.nf -resume --reads 'data/ggal/*_{1,2}.fq'
You will notice that the quantification
process is executed more than
one time.
Nextflow parallelizes the execution of your pipeline simply by providing multiple input data to your script.
Add a tag directive to the
quantification
process to provide a more readable execution log.
Add a publishDir directive
to the quantification
process to store the process results into a directory of your
choice.
In this step you have learned:
- How to connect two processes by using the channel declarations
- How to resume the script execution skipping already already computed steps
- How to use the
tag
directive to provide a more readable execution output - How to use the
publishDir
to store a process results in a path of your choice
This step implements a quality control of your input reads. The inputs are the same
read pairs which are provided to the quantification
steps
You can run it by using the following command:
nextflow run script5.nf -resume
The script will report the following error message:
Channel `read_pairs_ch` has been used twice as an input by process `fastqc` and process `quantification`
Modify the creation of the read_pairs_ch
channel by using a into
operator in place of a set
.
Tip: see an example here.
In this step you have learned:
- How to use the
into
operator to create multiple copies of the same channel
This step collect the outputs from the quantification
and fastqc
steps to create
a final report by using the MultiQC tool.
Execute the script with the following command:
nextflow run script6.nf -resume --reads 'data/ggal/*_{1,2}.fq'
It creates the final report in the results
folder in the current work directory.
In this script note the use of the mix
and collect operators chained
together to get all the outputs of the quantification
and fastqc
process as a single
input.
In this step you have learned:
- How to collect many outputs to a single input with the
collect
operator - How to
mix
two channels in a single channel - How to chain two or more operators togethers
This step shows how to execute an action when the pipeline completes the execution.
Note that Nextflow processes define the execution of asynchronous tasks i.e. they are not executed one after another as they are written in the pipeline script as it would happen in a common imperative programming language.
The script uses the workflow.onComplete
event handler to print a confirmation message
when the script completes.
Try to run it by using the following command:
nextflow run script7.nf -resume --reads 'data/ggal/*_{1,2}.fq'
Send a notification email when the workflow execution complete using the -N <email address>
command line option. Note: this requires the configuration of a SMTP server in nextflow config
file. See mail documentation
for details.
Real world pipelines use a lot of custom user scripts (BASH, R, Python, etc). Nextflow
allows you to use and manage all these scripts in consistent manner. Simply put them
in a directory named bin
in the pipeline project root. They will be automatically added
to the pipeline execution PATH
.
For example, create a file named fastqc.sh
with the following content:
#!/bin/bash
set -e
set -u
sample_id=${1}
reads=${2}
mkdir fastqc_${sample_id}_logs
fastqc -o fastqc_${sample_id}_logs -f fastq -q ${reads}
Save it, give execute permission and move it in the bin
directory as shown below:
chmod +x fastqc.sh
mkdir -p bin
mv fastqc.sh bin
Then, open the script7.nf
file and replace the fastqc
process' script with
the following code:
script:
"""
fastqc.sh "$sample_id" "$reads"
"""
Run it as before:
nextflow run script7.nf -resume --reads 'data/ggal/*_{1,2}.fq'
In this step you have learned:
- How to write or use existing custom script in your Nextflow pipeline.
- How to avoid the use of absolute paths having your scripts in the
bin/
project folder.
Real world genomic application can spawn the execution of thousands of jobs. In this scenario a batch scheduler is commonly used to deploy a pipeline in a computing cluster, allowing the execution of many jobs in parallel across many computing nodes.
Nextflow has built-in support for most common used batch schedulers such as Univa Grid Engine and SLURM between the others.
To run your pipeline with a batch scheduler modify the nextflow.config
file specifying
the target executor and the required computing resources if needed. For example:
process.executor = 'slurm'
process.queue = 'short'
process.memory = '10 GB'
process.time = '30 min'
process.cpus = 4
The above configuration specify the use of the SLURM batch scheduler to run the
jobs spawned by your pipeline script. Then it specifies to use the short
queue (partition),
10 gigabyte of memory and 4 CPUs per job, and each job can run for no more than 30 minutes.
Note: the pipeline must be executed in a shared file system accessible to all the computing nodes.
Print the head of the .command.run
script generated by Nextflow in the task work directory
and verify it contains the SLURM #SBATCH
directives for the requested resources.
Modify the configuration file to specify different resource request for
the quantification
process.
Tip: see the process documentation for an example.
In this step you have learned:
- How to deploy a pipeline in a computing cluster.
- How to specify different computing resources for different pipeline processes.
The built-in support for AWS Batch allows the execution your workflow scripts
only changing a few settings in the nextflow.config
file. For example:
workDir = 's3://cbcrg-eu/work'
process.executor = 'awsbatch'
process.queue = 'demo'
process.container = 'nextflow/rnaseq-nf'
executor.awscli = '/home/ec2-user/miniconda/bin/aws'
aws.region = 'eu-west-1'
A S3 bucket must be provide by using the workDir
configuration setting. Also the name of a queue
previously created in the AWS Batch environment needs to be specified using the process.queue
setting.
See the AWS Batch documentation for details.
The Nextflow configuration file can be organised in different profiles to allow the specification of separate settings depending on the target execution environment.
For the sake of this tutorial modify the nextflow.config
as shown below:
profiles {
standard {
process.container = 'nextflow/rnaseq-nf'
docker.enabled = true
}
cluster {
process.executor = 'slurm'
process.queue = 'short'
process.memory = '10 GB'
process.time = '30 min'
process.cpus = 8
}
batch {
workDir = 's3://cbcrg-eu/work'
process.executor = 'awsbatch'
process.queue = 'demo'
process.container = 'nextflow/rnaseq-nf'
executor.awscli = '/home/ec2-user/miniconda/bin/aws'
aws.region = 'eu-west-1'
}
}
The above configuration defines two profiles: standard
and cluster
. The name of the
profile to use can be specified when running the pipeline script by using the -profile
option. For example:
nextflow run script7.nf -profile cluster
The profile standard
is used by default if no other profile is specified by the user.
In this step you have learned:
- How to organise your pipeline configuration in separate profiles
Nextflow allows the execution of a pipeline project directly from a GitHub repository (or similar services eg. BitBucket and GitLab).
This simplifies the sharing and the deployment of complex projects and tracking changes in a consistent manner.
The following GitHub repository hosts a complete version of the workflow introduced in this tutorial:
https://github.com/nextflow-io/rnaseq-nf
You can run it by specifying the project name as shown below:
nextflow run nextflow-io/rnaseq-nf -with-docker
It automatically downloads it and store in the $HOME/.nextflow
folder.
Use the command info
to show the project information, e.g.:
nextflow info nextflow-io/rnaseq-nf
Nextflow allows the execution of a specific revision of your project by using the -r
command line option. For Example:
nextflow run nextflow-io/rnaseq-nf -r dev
Revision are defined by using Git tags or branches defined in the project repository.
This allows a precise control of the changes in your project files and dependencies over time.
Singularity is container runtime designed to work in HPC data center, where the usage of Docker is generally not allowed due to security constraints.
Singularity implements the container execution model similarly to Docker however using a complete different implementation design.
A Singularity container image is archived in a plain file that can be stored in shared file system and accessed by many computing nodes managed by a batch scheduler.
Notably Singularity is able to convert Docker container images to its native format and execute it.
Nextflow streamline this process enabling dead-easy interoperability between the two
container runtime. To run a containerized script replace the docker.enabled = true
with the singularity.enabled = true
setting.
Conda is popular package and environment manager. The built-in support for Conda allows Nextflow pipelines to automatically creates and activates the Conda environment(s) given the dependencies specified by each process.
To use a Conda environment with Nextflow specify it as a command line option as shown below:
nextflow run script7.nf -with-conda env.yml
The use of a Conda environment can also be provided in the configuration file
adding the following setting in the nextflow.config
file:
process.conda = "env.yml"
See the Nextflow in the Nextflow documentation for details.
Nextflow is able to produce multiple reports and charts providing several runtime metrics and execution information.
Run the rnaseq-nf pipeline previously introduced as shown below:
nextflow run rnaseq-nf -with-docker -with-report -with-trace -with-timeline -with-dag dag.png
The -with-report
option enables the creation of the workflow execution report. Open
the file report.html
with a browser to see the report created with the above command.
The -with-trace
option enables the create of a tab separated file containing runtime
information for each executed task. Check the content of the file trace.txt
for an example.
The -with-timeline
option enables the creation of the workflow timeline report showing
how processes where executed along time. This may be useful to identify most time consuming
tasks and bottlenecks. See an example at this link.
Finally the -with-dag
option enables to rendering of the workflow execution direct acyclic graph
representation. Note: this feature requires the installation of Graphviz in your computer.
See here for details.
Note: runtime metrics may be incomplete for run short running tasks as in the case of this tutorial.
- Nextflow documentation - The Nextflow docs home.
- Nextflow patterns - A collection of Nextflow implementation patterns.
- CalliNGS-NF - An Variant calling pipeline implementing GATK best practices.
- nf-core - A community collection of production ready genomic pipelines.
We are organising a Nextflow workshop on November 22-23, '18 in Barcelona. For details and registration check it out here.