-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFuzzyClusteringAlgorithm.py
424 lines (395 loc) · 19.7 KB
/
FuzzyClusteringAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import os
import os.path
import sys
from sys import platform
import numpy as np
from sklearn.utils.validation import check_array
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import homogeneity_score
from sklearn.metrics.cluster import silhouette_score
from . import TUlti as tulti
import timeit
from . import TDef
import csv
from csv import writer
import random
from .cvi import *
from .fuzzy_cluster_validity_indices import *
from sklearn.utils import check_random_state
import random
class FuzzyClusteringAlgorithm:
ALGORITHM_LIST = ['kModes','kRepresentatives']
def __init__(self, X, y,n_init=-1,k=-1,n_iter=-1,dbname='dbname',alpha=1.1,random_state=None):
self.random_state = check_random_state(random_state)
self.seed = -1
self.alpha = alpha
self.measurename = 'None'
self.dicts = [];self.dicts2 = []
self.iter=-1
self.dbname = dbname
self.time_lsh=-1
self.X = X
self.y = y
self.n = len(self.X)
self.d = len(self.X[0])
self.k = k if k > 0 else len(np.unique(y))
self.n_init = n_init
self.n_iter = n_iter
if n_init == -1: self.n_init = TDef.n_init
if n_iter ==-1 : self.n_iter = TDef.n_iter
self.scorebest = -2
self.power = float(1 / (self.alpha - 1))
self.power2 = float(1 / (TDef.beta - 1))
#self.threshold_measure = 132000000
self.threshold_measure = 100000000
if TDef.seed == -1:
random.seed(None)
self.seed = random.randint(0,100000)
else: self.seed = TDef.seed
random.seed(self.seed)
def SetupMeasure(self, classname):
self.measurename = classname
module = __import__(classname, globals(), locals(), ['object'])
class_ = getattr(module, classname)
self.measure = class_()
self.measure.setUp(self.X, self.y)
def SetupLSH(self, hbits=-1,k=-1,measure='DILCA' ):
asd=123
def overlap_distance(self,a, b):
return np.sum(a != b)
def Overlap(self,x,y):
n = len(x)
sum =0
for i in range(n):
if x[i] != y[i]: sum +=1
return sum
def DoCluster(self):
print("Do something")
return -1
def _labels_cost(self,X, centroids, dissim, membship=None):
X = check_array(X)
n_points = X.shape[0]
cost = 0.
labels = np.empty(n_points, dtype=np.uint16)
for ipoint, curpoint in enumerate(X):
diss = self.ComputeDistances(centroids, curpoint)
clust = np.argmin(diss)
labels[ipoint] = clust
cost += diss[clust]
return labels, cost
def _labels_cost_Overlap(self,X, centroids, dissim, membship=None):
X = check_array(X)
n_points = X.shape[0]
cost = 0.
labels = np.empty(n_points, dtype=np.uint16)
for ipoint, curpoint in enumerate(X):
diss = self.ComputeDistances_Overlap(centroids, curpoint)
clust = np.argmin(diss)
labels[ipoint] = clust
cost += diss[clust]
return labels, cost
def ComputeDistances(self, X, mode):
return [ self.measure.calculate(i, mode ) for i in X ]
def ComputeDistances_Overlap(self, X, mode):
return [ self.Overlap(i, mode ) for i in X ]
def ComputeUfromlabels(self,labels):
self.u = np.zeros((self.n, self.k))
for i in range(self.n):
self.u[i][labels[i]]=1
def CalcScore(self, verbose=True):
if TDef.is_skip_eval: return
self.AddVariableToPrint("name",self.name)
self.AddVariableToPrint("name_full",self.name_full)
self.AddVariableToPrint("desc",self.desc)
self.timetest = timeit.default_timer()
#print("TIME1:",timeit.default_timer()-self.timetest,'tich=',self.n*self.k*self.d ); self.timetest = timeit.default_timer()
starttime = timeit.default_timer()
s="";
if self.n*self.k*self.d <= 1000000000:
self.purity_score = tulti.CheckCLusteringPurityByHeuristic(self.y, self.labels)
else: self.purity_score =-2
#print("TIME2:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
self.NMI_score = normalized_mutual_info_score(self.y,self.labels) #tulti.CheckClusteringNMI(self.y, self.labels)
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
#print("TIME3:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.ARI_score = adjusted_rand_score(self.labels,self.y) # tulti.CheckClusteringARI(self.y, self.labels)
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
self.AMI_score = adjusted_mutual_info_score(self.labels,self.y)
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
self.HOMO_score = homogeneity_score(self.labels,self.y)
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
#print("TIME4:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
if self.n*self.k*self.d <= self.threshold_measure:
try:
self.SILHOUETTE_score = silhouette_score(self.X, self.labels, metric= self.Overlap)
except:
self.SILHOUETTE_score=-1
else: self.SILHOUETTE_score=-2
#print("TIME5:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
if self.n*self.k*self.d <= self.threshold_measure:
self.Ac_score, self.Pr_score,self.Rc_score = tulti.AcPrRc(self.y, self.labels)
else: self.Ac_score = self.Pr_score = self.Rc_score = -2
#print("TIME6:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
s+= str(timeit.default_timer()-starttime)+"|"; starttime = timeit.default_timer()
self.AddVariableToPrint("Scoringtime",s )
if verbose: print("Purity:", "%.2f" % self.purity_score,"NMI:", "%.2f" %self.NMI_score,"ARI:", "%.2f" %self.ARI_score,"Sil: ", "%.2f" %self.SILHOUETTE_score,"Acc:", "%.2f" %self.Ac_score,
"Recall:", "%.2f" %self.Rc_score,"Precision:", "%.2f" %self.Pr_score)
#print("TIME22:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
return (self.purity_score,self.NMI_score,self.ARI_score,self.AMI_score,self.HOMO_score,self.SILHOUETTE_score,self.time_score, self.time_lsh,
self.Ac_score, self.Pr_score, self.Rc_score)
def CalcFuzzyScore(self):
if TDef.is_skip_eval: return
#print("TIME33:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_pc = pc(self.X, self.u.T,self.centroids, self.alpha )
#print("TIME331:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_npc = npc(self.X, self.u.T,self.centroids, self.alpha )
#print("TIME332:",timeit.default_timer()-self.timetest,'tich=',self.n*self.k*self.d); self.timetest = timeit.default_timer()
if self.n*self.k*self.d <= self.threshold_measure:
self.fuzzy_fhv = fhv(self.X, self.u.T,self.centroids, self.alpha, self.minus_X_to_v )
self.fuzzy_fs = fs(self.X, self.u.T,self.centroids, self.alpha ,self.squared_distances, self.squared_distances_V)
self.fuzzy_xb = xb(self.X, self.u.T,self.centroids, self.alpha ,self.squared_distances, self.squared_distances_V)
self.fuzzy_bh = bh(self.X, self.u.T,self.centroids, self.alpha ,self.squared_distances, self.squared_distances_V)
self.fuzzy_bws = bws(self.X, self.u.T,self.centroids, self.alpha,self.minus_X_to_v )
else: self.fuzzy_fs = -2; self.fuzzy_xb=-2; self.fuzzy_bh=-2;self.fuzzy_fhv=-2;self.fuzzy_bws=-2
#print("TIME333:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_fpc = self._fp_coeff(self.u)
#print("TIME34:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
if self.n*self.k*self.d <= self.threshold_measure:
self.fuzzy_sil_ = FuzzySil(self.X,self.u)
self.fuzzy_mysil = MyFuzzySil(self.X,self.u,self.labels)
else:
self.fuzzy_sil_ = -2
self.fuzzy_mysil = -2
#print("TIME35:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
_,_,self.fuzzy_mpo = MPO(self.u)
#print("TIME351:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_npe = NPE(self.u)
#print("TIME352:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_pe = PE(self.u)
#print("TIME353:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
self.fuzzy_peb = PEB(self.u)
#print("TIME36:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
print("Fuzzy scores PC:" +"%.2f" %self.fuzzy_pc,"NPC:" +"%.2f" %self.fuzzy_npc
,"FHV↓:" +"%.2f" %self.fuzzy_fhv,"FS↓:" +"%.2f" %self.fuzzy_fs
,"XB↓:" +"%.2f" %self.fuzzy_xb,"BH↓:" +"%.2f" %self.fuzzy_bh,"BWS:" +"%.2f" %self.fuzzy_bws,
"FPC:" +"%.2f" %self.fuzzy_fpc, "SIL_R:" +"%.2f" %self.fuzzy_sil_, "FSIL:" +"%.2f" %self.fuzzy_mysil, "MPO:" +"%.2f" %self.fuzzy_mpo,
"NPE:" +"%.2f" %self.fuzzy_npe, "PE:" +"%.2f" %self.fuzzy_pe, "PEB:" +"%.2f" %self.fuzzy_peb)
if TDef.is_auto_save:
self.WriteResultToCSV()
#print("TIME44:",timeit.default_timer()-self.timetest); self.timetest = timeit.default_timer()
def append_list_as_row(self,file_name, list_of_elem):
with open(file_name, 'a+', newline='') as write_obj:
csv_writer = writer(write_obj)
csv_writer.writerow(list_of_elem)
def AddVariableToPrint(self,name,val):
self.dicts2.append((name,val ))
def WriteResultToCSV(self,file=''):
if not os.path.exists(TDef.folder):
os.makedirs(TDef.folder)
if file=='':
file = TDef.folder+ '/' + self.name + TDef.fname + ".csv"
self.dbname = self.dbname.replace("_c","").replace(".csv","").capitalize()
self.dicts.append(('dbname',self.dbname ))
self.dicts.append(('n',self.n ))
self.dicts.append(('d',self.d ))
self.dicts.append(('k',self.k ))
self.dicts.append(('seed',self.seed ))
self.dicts.append(('range','-1' ))
self.dicts.append(('sigma_ratio',-1 ))
self.dicts.append(('Measure', self.measurename))
self.dicts.append(('n_init',self.n_init ))
self.dicts.append(('n_iter',self.n_iter ))
self.dicts.append(('iter',self.iter ))
self.dicts.append(('Purity',self.purity_score ))
self.dicts.append(('NMI',self.NMI_score ))
self.dicts.append(('ARI',self.ARI_score ))
self.dicts.append(('AMI',self.AMI_score ))
self.dicts.append(('Homogeneity',self.HOMO_score ))
self.dicts.append(('Silhouette',self.SILHOUETTE_score ))
self.dicts.append(('Accuracy',self.Ac_score ))
self.dicts.append(('Precision',self.Pr_score ))
self.dicts.append(('Recall',self.Rc_score ))
self.dicts.append(('Time',self.time_score ))
self.dicts.append(('LSH_time',self.time_lsh ))
self.dicts.append(('Score',self.scorebest ))
self.dicts.append(('PC',self.fuzzy_pc ))
self.dicts.append(('NPC',self.fuzzy_npc ))
self.dicts.append(('FHV',self.fuzzy_fhv ))
self.dicts.append(('FS',self.fuzzy_fs ))
self.dicts.append(('XB',self.fuzzy_xb ))
self.dicts.append(('BH',self.fuzzy_bh ))
self.dicts.append(('BWS',self.fuzzy_bws ))
self.dicts.append(('FPC',self.fuzzy_fpc ))
self.dicts.append(('FSilhouette_R',self.fuzzy_sil_ ))
self.dicts.append(('FSilhouette',self.fuzzy_mysil ))
self.dicts.append(('MPO',self.fuzzy_mpo ))
self.dicts.append(('NPE',self.fuzzy_npe ))
self.dicts.append(('PE',self.fuzzy_pe ))
self.dicts.append(('PEB',self.fuzzy_peb ))
dicts = self.dicts+self.dicts2;
try:
if os.path.isfile(file)==False:
colnames = [i[0] for i in dicts]
self.append_list_as_row(file,colnames)
vals = [i[1] for i in dicts]
self.append_list_as_row(file,vals)
except Exception as ex:
print('Cannot write to file ', file ,'', ex);
self.WriteResultToCSV(file + str(random.randint(0,1000000)) + '.csv')
def _fp_coeff(self,u):
n = u.shape[1]
return np.trace(u.dot(u.T)) / float(n)
def ComputeRepresentatives(self,u):
weightsums = [[[0.0 for i in range(self.D[j])] for j in range(self.d) ] for kk in range(self.k)]
weightsums_total = [[0.0 for j in range(self.d) ] for kk in range(self.k)]
representatives =( [[[0.0 for i in range(self.D[j])] for j in range(self.d)] for ki in range(self.k)])
um = u ** self.alpha
for ki in range(self.k):
for di in range(self.d):
weightsums_total[ki][di]=0
for ai in range(self.D[di]):
weightsums[ki][di][ai] =0.0
for i,x in enumerate (self.X):
for di,xi in enumerate(x):
for ki in range(self.k):
weightsums[ki][di][xi] += um[i,ki]
weightsums_total[ki][di]+= um[i,ki]
for ki in range(self.k):
for di in range(self.d):
for vj in range(self.D[di]):
representatives[ki][di][vj] = weightsums[ki][di][vj]/weightsums_total[ki][di]
return representatives
def ResetWeightsums(self):
for kk in range(self.k):
for j in range(self.d):
self.weightsums_total[kk][j]=0
for i in range(self.D[j]):
self.weightsums[kk][j][i]=0
def Compute_dismatrix(self, X,KIS):
dist_matrix = np.empty((self.n,self.k))
for i in range(self.n):
for ki in range(self.k):
dist_matrix[i][ki] = self.OverlapKrepresentatives(X[i],KIS[ki])
return dist_matrix
def Compute_dismatrix_res(self, KIS):
dist_matrix = np.zeros((self.k,self.k))
for i in range(self.k-1):
for j in range(i+1,self.k):
dist_matrix[i][j] =dist_matrix[j][i]= self.Overlap_Between_Krepresentatives(KIS[i],KIS[j])
return dist_matrix
def OverlapKrepresentatives(self,point,representative):
sum=0;
for i in range (self.d):
for vj in range(self.D[i]):
if point[i] != vj:
sum+= representative[i][vj]
return sum
def Overlap_Between_Krepresentatives(self,r1,r2):
sum=0
for k in range(self.d):
sum+= np.linalg.norm(np.array(r1[k]) - np.array(r2[k]))
return sum
def DistanceRepresentativeToRepresentative(self, r1,r2):
sum =0
for k in range(self.d):
sum+= np.linalg.norm(np.array(r1[k]) - np.array(r2[k]))
return sum
def ComputeMemberships_Modes(self,modes):
u =np.zeros((self.n,self.k));
distall =np.zeros((self.n,self.k));
distall_sum =np.zeros((self.n));
for i in range(self.n):
for ki in range(self.k):
tmp = self.Overlap(self.X[i],modes[ki] )
if tmp==0: tmp=0.0001
distall[i][ki] = 1/(tmp**self.power)
if(distall[i][ki]==0): distall[i][ki] = 000.00001
distall_sum[i]+=distall[i][ki]
for ki in range(self.k):
u[i][ki] = distall[i][ki]/distall_sum[i]
self.cost_modes = np.sum(u**self.power*distall)
return u
#def Compute_dismatrix_modes(self,modes):
def ComputeLabels_modes(self,solution):
dist_matrix=scipy.spatial.distance.cdist(self.X, solution, self.Overlap)
return np.argmin(dist_matrix,1)
def ComputeMemberships(self, kiss):
distall_tmp = np.zeros((self.n,self.k))
distall = np.zeros((self.n,self.k))
for i in range(self.n):
for ki in range(self.k):
tmp = self.OverlapKrepresentatives(self.X[i],kiss[ki] )
distall_tmp[i][ki] = tmp
distall[i][ki] = tmp**power
denominator_ = distall.reshape((self.X.shape[0], 1, -1)).repeat(distall.shape[-1], axis=1)
denominator_ = distall[:, :, np.newaxis] / denominator_
self.u = 1 / denominator_.sum(2)
return np.sum(self.u**self.alpha*distall_tmp)
def CheckLabels(self):
#if self.k>2: return
uniques = np.unique(self.labels)
if len(uniques) == self.k: return
print("Waring: empty cluser!!")
for i in range(self.k):
if i not in uniques:
self.labels[random.randint(0,self.n-1)] = i;
break
self.CheckLabels()
def EncodeCategoricalFeatures(self):
D = [len(np.unique(self.X[:,i])) for i in range(self.d) ]
d2 = sum(D)
X2 = np.empty((self.n,d2))
current_di=0
current_index=0
for di in range(d2):
for ni in range(self.n):
if self.X[ni,current_di] == current_index:
X2[ni,di]=1
else : X2[ni,di]=0
current_index+=1
if current_index==D[current_di]:
current_di+=1
current_index=0
self.X=X2
self.d = d2
def minus_X_to_v_mode(self, X,v):
d = X.shape[1]
m = np.zeros( (X.shape[0],d) )
for i,xi in enumerate(X):
for di in range(d):
m[i][di] = xi[di] - v[di]
return m;
def minus_X_to_v_vector(self, X,v):
return X-v;
def minus_X_to_v_rep(self, X,v):
d = X.shape[1]
m = np.ones( (X.shape[0],d) )
for i,xi in enumerate(X):
for di in range(d):
m[i][di] = 1 - v[di][xi[di]]
return m;
def squared_distances_rep(self, x,v):
m = np.zeros((self.n,self.k))
for i in range(self.n):
for j in range(self.k):
m[i][j] = self.OverlapKrepresentatives (x[i],v[j])**2
return m
return scipy.spatial.distance.cdist(x, v,self.Distance2)**2
def squared_distances_V_rep(self, v1,v2):
m = np.zeros((self.k,self.k))
for i in range(self.k):
for j in range(self.k):
m[i][j] = self.DistanceRepresentativeToRepresentative(v1[i],v2[j])**2
return m
def squared_distances_vector(self, x,v):
return scipy.spatial.distance.cdist(x, v)**2
def squared_distances_V_vector(self, v1,v2):
return scipy.spatial.distance.cdist(v1, v2)**2
def squared_distances_mode(self, x,v):
return scipy.spatial.distance.cdist(x, v,overlap_distance)**2
def squared_distances_V_mode(self, v1,v2):
return scipy.spatial.distance.cdist(v1, v2,overlap_distance)**2