- Ubuntu 18.04.5 LTS
- CUDA 11.2
- Python 3.7.5
- Training PC: 1x RTX3090 (or any GPU with at least 24Gb VRAM), 32GB RAM.
- python packages are detailed separately in requirements.txt
$ conda create -n envs python=3.7.5
$ conda activate envs
$ pip install -r requirements.txt
$ pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
- Kalapa dataset.
- Vietnamese address dataset
https://github.com/thien0291/vietnam_dataset
- Vietnamese poems corpus:
https://huggingface.co/datasets/phamson02/vietnamese-poetry-corpus
- Synthetic data. Download my generated data here (https://drive.google.com/file/d/1FfjVZqNRZGExZjZmqzWk_L3QDQS-20Bl/view?usp=sharing)
- Or following the commands below to re-generating it. (make sure poems_dataset.csv and vietnam_dataset are inside synthetic_data/)
$ cd synthetic_data
$ python gendata_address.py
$ python gendata_aug.py
$ python gendata_poems.py
$ cd ..
$ python prepare_ext_data.py
- Folder structure before executing training
├── training_data
│ ├── images
│ ├── annotations
├── synthetic_data
│ ├── address
│ ├── aug
│ ├── poems
│ ├── ...
├── configs
│ ├── b2_256_ptr_f5.py
│ ├── b1_384_ptr_f5.py
│ ├── ...
├── train.py
├── prepare_ext_data.py
├── train_ext3.csv
├── train_folds.csv
├── ...
- Pretrained models on synthetic data.
$ python train.py -C b2_256_ptr_f5
$ python train.py -C b1_384_ptr_f5
- Fine-tune models on real data.
$ python train.py -C b1_384_f5
$ python train.py -C b2_256_f5
- Refer to submitted notebook
- Weights: https://drive.google.com/file/d/1CsWm4RT6tW-u8A0avVPiooZv9G_Lxpm6/view?usp=sharing