Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ONNX runtime inference compatibility #904

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,4 @@ fire
terminaltables
requests
click
onnxruntime
1 change: 1 addition & 0 deletions sahi/auto_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
"torchvision": "TorchVisionDetectionModel",
"yolov5sparse": "Yolov5SparseDetectionModel",
"yolonas": "YoloNasDetectionModel",
"onnx": "ONNXDetectionModel",
}


Expand Down
256 changes: 256 additions & 0 deletions sahi/models/onnx.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
# OBSS SAHI Tool
# Code written by Michael García, 2023.

import logging
from typing import Any, Dict, List, Optional
import cv2
import numpy as np
import torch
logger = logging.getLogger(__name__)

from sahi.models.base import DetectionModel
from sahi.prediction import ObjectPrediction
from sahi.utils.compatibility import fix_full_shape_list, fix_shift_amount_list
from sahi.utils.import_utils import check_requirements


def nms(boxes, scores, iou_threshold):
# Sort by score
sorted_indices = np.argsort(scores)[::-1]

keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)

# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])

# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]

# print(keep_indices.shape, sorted_indices.shape)
sorted_indices = sorted_indices[keep_indices + 1]

return keep_boxes

def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])

# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)

# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area

# Compute IoU
iou = intersection_area / union_area

return iou


def xywh2xyxy(x):
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y


class ONNXDetectionModel(DetectionModel):
def check_dependencies(self) -> None:
check_requirements(["onnxruntime"])

def load_model(self):
"""
Detection model is initialized and set to self.model.
"""

import onnxruntime

try:
EP_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
opt_session = onnxruntime.SessionOptions()
opt_session.enable_mem_pattern = False
opt_session.enable_cpu_mem_arena = True
opt_session.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
ort_session = onnxruntime.InferenceSession(self.model_path, providers=EP_list)

self.set_model(ort_session)

except Exception as e:
raise TypeError("model_path is not a valid onnx model path: ", e)

def set_model(self, model: Any):
"""
Sets the underlying ONNX model.
Args:
model: Any
A ONNX model
"""

self.model = model

# set category_mapping
if not self.category_mapping:
raise TypeError("Class mapping values are required")

def perform_inference(self, image: np.ndarray):
"""
Prediction is performed using self.model and the prediction result is set to self._original_predictions.
Args:
image: np.ndarray
A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
"""

# Confirm model is loaded
if self.model is None:
raise ValueError("Model is not loaded, load it by calling .load_model()")


model_inputs = self.model.get_inputs()
input_names = [model_inputs[i].name for i in range(len(model_inputs))]
input_shape = model_inputs[0].shape
model_output = self.model.get_outputs()
output_names = [model_output[i].name for i in range(len(model_output))]

image_height, image_width = image.shape[:2]

input_height, input_width = input_shape[2:]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
resized = cv2.resize(image_rgb, (input_width, input_height))

# Scale input pixel value to 0 to 1
input_image = resized / 255.0
input_image = input_image.transpose(2,0,1)
input_tensor = input_image[np.newaxis, :, :, :].astype(np.float32)
outputs = self.model.run(output_names, {input_names[0]: input_tensor})[0]

predictions = np.squeeze(outputs).T

scores = np.max(predictions[:, 4:], axis=1)
predictions = predictions[scores > self.confidence_threshold, :]
scores = scores[scores > self.confidence_threshold]
class_ids = np.argmax(predictions[:, 4:], axis=1)

boxes = predictions[:, :4]

#rescale box
input_shape = np.array([input_width, input_height, input_width, input_height])
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array([image_width, image_height, image_width, image_height])
boxes = boxes.astype(np.int32)

indices = nms(boxes, scores, self.confidence_threshold)
boxes[indices], scores[indices], class_ids[indices]

prediction_result = []
outputs = []

for (bbox, score, label) in zip(xywh2xyxy(boxes[indices]), scores[indices], class_ids[indices]):
bbox = bbox.round().astype(np.int32).tolist()
cls_id = int(label)

prediction_result.append([bbox[0], bbox[1], bbox[2], bbox[3], score, cls_id])

prediction_result = [torch.from_numpy(np.array(prediction_result))]
self._original_predictions = prediction_result

@property
def category_names(self):
return self.classes

@property
def num_categories(self):
"""
Returns number of categories
"""
return len(self.model.names)

@property
def has_mask(self):
"""
Returns if model output contains segmentation mask
"""
return False # fix when yolov5 supports segmentation models

def _create_object_prediction_list_from_original_predictions(
self,
shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
full_shape_list: Optional[List[List[int]]] = None,
):
"""
self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
self._object_prediction_list_per_image.
Args:
shift_amount_list: list of list
To shift the box and mask predictions from sliced image to full sized image, should
be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
full_shape_list: list of list
Size of the full image after shifting, should be in the form of
List[[height, width],[height, width],...]
"""
original_predictions = self._original_predictions

# compatilibty for sahi v0.8.15
shift_amount_list = fix_shift_amount_list(shift_amount_list)
full_shape_list = fix_full_shape_list(full_shape_list)

# handle all predictions
object_prediction_list_per_image = []
for image_ind, image_predictions_in_xyxy_format in enumerate(original_predictions):
shift_amount = shift_amount_list[image_ind]
full_shape = None if full_shape_list is None else full_shape_list[image_ind]
object_prediction_list = []

# process predictions
for prediction in image_predictions_in_xyxy_format.cpu().detach().numpy():
x1 = prediction[0]
y1 = prediction[1]
x2 = prediction[2]
y2 = prediction[3]
bbox = [x1, y1, x2, y2]
score = prediction[4]
category_id = int(prediction[5])
category_name = self.category_mapping[str(category_id)]

# fix negative box coords
bbox[0] = max(0, bbox[0])
bbox[1] = max(0, bbox[1])
bbox[2] = max(0, bbox[2])
bbox[3] = max(0, bbox[3])

# fix out of image box coords
if full_shape is not None:
bbox[0] = min(full_shape[1], bbox[0])
bbox[1] = min(full_shape[0], bbox[1])
bbox[2] = min(full_shape[1], bbox[2])
bbox[3] = min(full_shape[0], bbox[3])

# ignore invalid predictions
if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
continue

object_prediction = ObjectPrediction(
bbox=bbox,
category_id=category_id,
score=score,
bool_mask=None,
category_name=category_name,
shift_amount=shift_amount,
full_shape=full_shape,
)
object_prediction_list.append(object_prediction)
object_prediction_list_per_image.append(object_prediction_list)

self._object_prediction_list_per_image = object_prediction_list_per_image
Loading