forked from mlc-ai/mlc-llm
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'tmp' into bugfix/2023-Nov/stop-token-staging-engine
- Loading branch information
Showing
5 changed files
with
228 additions
and
53 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
import torch | ||
|
||
import argparse | ||
import json | ||
import random | ||
import os | ||
|
||
from mlc_llm import utils | ||
from mlc_serve.engine import ( | ||
Request, | ||
ChatMessage, | ||
DebugOptions, | ||
SamplingParams, | ||
StoppingCriteria, | ||
FinishReason, | ||
get_engine_config | ||
) | ||
from mlc_serve.engine.staging_engine import StagingInferenceEngine | ||
from mlc_serve.engine.sync_engine import SynchronousInferenceEngine | ||
from mlc_serve.model.paged_cache_model import HfTokenizerModule, PagedCacheModelModule | ||
|
||
def create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
|
||
): | ||
engine_config = get_engine_config({ | ||
"use_staging_engine": use_staging_engine, | ||
"max_num_batched_tokens": max_num_batched_tokens, | ||
"max_input_len": max_input_len, | ||
# Use defaults for "min_decode_steps", "max_decode_steps", "prompt_allocate_ratio" | ||
}) | ||
|
||
if use_staging_engine: | ||
engine = StagingInferenceEngine( | ||
tokenizer_module=HfTokenizerModule(model_artifact_path), | ||
model_module_loader=PagedCacheModelModule, | ||
model_module_loader_kwargs={ | ||
"model_artifact_path": model_artifact_path, | ||
"engine_config": engine_config, | ||
}, | ||
) | ||
engine.start() | ||
else: | ||
engine = SynchronousInferenceEngine( | ||
PagedCacheModelModule( | ||
model_artifact_path = model_artifact_path, | ||
engine_config = engine_config, | ||
)) | ||
return engine | ||
|
||
def create_request(idx, prompt, temp, max_tokens, stop, ignore_eos): | ||
return Request( | ||
request_id = str(idx), | ||
messages = [ChatMessage(role="user", content=prompt)], | ||
sampling_params = SamplingParams( | ||
temperature=0.0, | ||
), | ||
stopping_criteria = StoppingCriteria( | ||
max_tokens=max_tokens, | ||
stop_sequences=stop | ||
), | ||
debug_options = DebugOptions(ignore_eos = ignore_eos) | ||
) | ||
|
||
def test_max_tokens( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens=2560, | ||
max_input_len=2560, | ||
num_requests=5, | ||
ignore_eos=False | ||
): | ||
prompt = "Write a merge sort program in Python." | ||
engine = create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
) | ||
|
||
requests = [create_request(idx=str(n-1), prompt=prompt, temp=0, max_tokens=n, stop=None, ignore_eos=ignore_eos) for n in range(1, num_requests)] | ||
engine.add(requests) | ||
|
||
generated = ["" for _ in range(num_requests)] | ||
|
||
while engine.has_pending_requests(): | ||
results = engine.step() | ||
for res in results.outputs: | ||
assert len(res.sequences) == 1 | ||
seq = res.sequences[0] | ||
|
||
if seq.is_finished: | ||
assert seq.num_generated_tokens == requests[int(res.request_id)].stopping_criteria.max_tokens | ||
assert seq.finish_reason == FinishReason.Length | ||
else: | ||
generated[int(res.request_id)] += seq.delta | ||
|
||
if use_staging_engine: | ||
engine.stop() | ||
|
||
|
||
def test_ignore_eos( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens=2560, | ||
max_input_len=2560, | ||
num_requests=5, | ||
): | ||
prompt = "hi" | ||
engine = create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
) | ||
s = 113 | ||
requests = [create_request(idx=str(n-s), prompt=prompt, temp=0, max_tokens=n, stop=None, ignore_eos=True) for n in range(s, s+num_requests)] | ||
engine.add(requests) | ||
|
||
generated = ["" for _ in range(num_requests)] | ||
|
||
while engine.has_pending_requests(): | ||
results = engine.step() | ||
for res in results.outputs: | ||
assert len(res.sequences) == 1 | ||
seq = res.sequences[0] | ||
|
||
if seq.is_finished: | ||
assert seq.num_generated_tokens == requests[int(res.request_id)].stopping_criteria.max_tokens | ||
assert seq.finish_reason == FinishReason.Length | ||
else: | ||
generated[int(res.request_id)] += seq.delta | ||
|
||
if use_staging_engine: | ||
engine.stop() | ||
|
||
|
||
def test_stop( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens=2560, | ||
max_input_len=2560, | ||
num_requests=5, | ||
): | ||
prompt = "Write a merge sort program in Python." | ||
engine = create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
) | ||
ignore_eos = False | ||
requests = [] | ||
for n, stop in enumerate(["\n", ["\n"], "\n\n", "!", ["n", "!"]]): | ||
requests.append(create_request(idx=str(n), prompt=prompt, temp=0, max_tokens=300, stop=stop, ignore_eos=False)) | ||
engine.add(requests) | ||
|
||
generated = ["" for _ in range(num_requests)] | ||
|
||
while engine.has_pending_requests(): | ||
results = engine.step() | ||
for res in results.outputs: | ||
assert len(res.sequences) == 1 | ||
seq = res.sequences[0] | ||
req_id = int(res.request_id) | ||
if seq.is_finished: | ||
#assert seq.finish_reason == FinishReason.Stop, f"{seq.finish_reason.name}" | ||
assert not seq.delta | ||
gen_txt = generated[req_id] | ||
print(f"request id {req_id} : {gen_txt!r}") | ||
# stop token should appear only once in the gen text. | ||
found = sum([gen_txt.count(str_stop) for str_stop in requests[req_id].stopping_criteria.stop_sequences]) | ||
assert found == 1, f"{gen_txt!r}, matches: {found}" | ||
else: | ||
generated[int(res.request_id)] += seq.delta | ||
|
||
if use_staging_engine: | ||
engine.stop() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--local-id", type=str, required=True) | ||
parser.add_argument("--artifact-path", type=str, default="../../../dist") | ||
args = parser.parse_args() | ||
model_artifact_path = os.path.join(args.artifact_path, args.local_id) | ||
|
||
#test_max_tokens(model_artifact_path, use_staging_engine=True) | ||
#test_max_tokens(model_artifact_path, use_staging_engine=False) | ||
#test_ignore_eos(model_artifact_path, use_staging_engine=True) | ||
#test_ignore_eos(model_artifact_path, use_staging_engine=False) | ||
|
||
#test_stop(model_artifact_path, use_staging_engine=False) | ||
test_stop(model_artifact_path, use_staging_engine=True) |