Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.07213 #6282

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
242 changes: 242 additions & 0 deletions joss.07213/10.21105.joss.07213.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241223200754-13b3c3cf3487497ef510cc391be378ea2817cc66</doi_batch_id>
<timestamp>20241223200754</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>BART-Survival: A Bayesian machine learning approach to survival analyses in Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jacob</given_name>
<surname>Tiegs</surname>
<affiliations>
<institution><institution_name>Inform and Disseminate Division, Office of Public Health Data, Surveillance, and Technology, Centers for Disease Control and Prevention, Atlanta, GA, USA</institution_name></institution>
<institution><institution_name>Metas Solutions, Atlanta, Georgia</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0001-6265-913X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Julia</given_name>
<surname>Raykin</surname>
<affiliations>
<institution><institution_name>Inform and Disseminate Division, Office of Public Health Data, Surveillance, and Technology, Centers for Disease Control and Prevention, Atlanta, GA, USA</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0006-1840-6991</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ilia</given_name>
<surname>Rochlin</surname>
<affiliations>
<institution><institution_name>Inform and Disseminate Division, Office of Public Health Data, Surveillance, and Technology, Centers for Disease Control and Prevention, Atlanta, GA, USA</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-7680-6965</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>23</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7213</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07213</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14105188</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7213</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07213</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07213</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07213.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="quiroga2023">
<article_title>Bayesian additive regression trees for probabilistic programming</article_title>
<author>Quiroga</author>
<doi>10.48550/arXiv.2206.03619</doi>
<cYear>2023</cYear>
<unstructured_citation>Quiroga, M., Garay, P. G., Alonso, J. M., Loyola, J. M., &amp; Martin, O. A. (2023). Bayesian additive regression trees for probabilistic programming (No. arXiv:2206.03619). arXiv. https://doi.org/10.48550/arXiv.2206.03619</unstructured_citation>
</citation>
<citation key="sparapani2021">
<article_title>Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package</article_title>
<author>Sparapani</author>
<journal_title>Journal of Statistical Software</journal_title>
<issue>1</issue>
<volume>97</volume>
<doi>10.18637/jss.v097.i01</doi>
<issn>1548-7660</issn>
<cYear>2021</cYear>
<unstructured_citation>Sparapani, R., Spanbauer, C., &amp; McCulloch, R. (2021). Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package. Journal of Statistical Software, 97(1). https://doi.org/10.18637/jss.v097.i01</unstructured_citation>
</citation>
<citation key="sparapani2016">
<article_title>Nonparametric survival analysis using Bayesian Additive Regression Trees (BART)</article_title>
<author>Sparapani</author>
<journal_title>Statistics in Medicine</journal_title>
<issue>16</issue>
<volume>35</volume>
<doi>10.1002/sim.6893</doi>
<issn>0277-6715</issn>
<cYear>2016</cYear>
<unstructured_citation>Sparapani, R. A., Logan, B. R., McCulloch, R. E., &amp; Laud, P. W. (2016). Nonparametric survival analysis using Bayesian Additive Regression Trees (BART). Statistics in Medicine, 35(16), 2741–2753. https://doi.org/10.1002/sim.6893</unstructured_citation>
</citation>
<citation key="rossi1980">
<article_title>Money, work, and crime: Some experimental results</article_title>
<author>Rossi</author>
<journal_title>New York: Academic Press</journal_title>
<cYear>1980</cYear>
<unstructured_citation>Rossi, R. A. B., P. H., &amp; Lenihan, K. J. (1980). Money, work, and crime: Some experimental results. New York: Academic Press.</unstructured_citation>
</citation>
<citation key="stel2011">
<article_title>Survival analysis i: The kaplan-meier method</article_title>
<author>Stel Vianda S.</author>
<journal_title>Nephron Clin Pract</journal_title>
<issue>1</issue>
<volume>119</volume>
<doi>10.1159/000324758</doi>
<issn>1660-2110</issn>
<cYear>2011</cYear>
<unstructured_citation>Stel Vianda S., T. G., Dekker Friedo W. (2011). Survival analysis i: The kaplan-meier method. Nephron Clin Pract, 119(1). https://doi.org/10.1159/000324758</unstructured_citation>
</citation>
<citation key="abril-pla2023">
<article_title>PyMC: A modern, and comprehensive probabilistic programming framework in Python</article_title>
<author>Abril-Pla</author>
<journal_title>PeerJ Computer Science</journal_title>
<volume>9</volume>
<doi>10.7717/peerj-cs.1516</doi>
<issn>2376-5992</issn>
<cYear>2023</cYear>
<unstructured_citation>Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J., Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., &amp; Zinkov, R. (2023). PyMC: A modern, and comprehensive probabilistic programming framework in Python. PeerJ Computer Science, 9, e1516. https://doi.org/10.7717/peerj-cs.1516</unstructured_citation>
</citation>
<citation key="altman1998">
<article_title>Statistics Notes: Time to event (survival) data</article_title>
<author>Altman</author>
<journal_title>BMJ</journal_title>
<issue>7156</issue>
<volume>317</volume>
<doi>10.1136/bmj.317.7156.468</doi>
<issn>0959-8138</issn>
<cYear>1998</cYear>
<unstructured_citation>Altman, D. G., &amp; Bland, J. M. (1998). Statistics Notes: Time to event (survival) data. BMJ, 317(7156), 468–469. https://doi.org/10.1136/bmj.317.7156.468</unstructured_citation>
</citation>
<citation key="bradburn2003">
<article_title>Survival Analysis Part II: Multivariate data analysis – an introduction to concepts and methods</article_title>
<author>Bradburn</author>
<journal_title>British Journal of Cancer</journal_title>
<issue>3</issue>
<volume>89</volume>
<doi>10.1038/sj.bjc.6601119</doi>
<issn>0007-0920</issn>
<cYear>2003</cYear>
<unstructured_citation>Bradburn, M. J., Clark, T. G., Love, S. B., &amp; Altman, D. G. (2003). Survival Analysis Part II: Multivariate data analysis – an introduction to concepts and methods. British Journal of Cancer, 89(3), 431–436. https://doi.org/10.1038/sj.bjc.6601119</unstructured_citation>
</citation>
<citation key="chipman2010">
<article_title>BART: Bayesian additive regression trees</article_title>
<author>Chipman</author>
<journal_title>The Annals of Applied Statistics</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1214/09-AOAS285</doi>
<issn>1932-6157</issn>
<cYear>2010</cYear>
<unstructured_citation>Chipman, H. A., George, E. I., &amp; McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1). https://doi.org/10.1214/09-AOAS285</unstructured_citation>
</citation>
<citation key="cox1972">
<article_title>Regression Models and Life-Tables</article_title>
<author>Cox</author>
<journal_title>Journal of the Royal Statistical Society Series B: Statistical Methodology</journal_title>
<issue>2</issue>
<volume>34</volume>
<doi>10.1111/j.2517-6161.1972.tb00899.x</doi>
<issn>1369-7412</issn>
<cYear>1972</cYear>
<unstructured_citation>Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B: Statistical Methodology, 34(2), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x</unstructured_citation>
</citation>
<citation key="joffe2013">
<article_title>Survival Prediction In High Dimensional Datasets – Comparative Evaluation Of Lasso Regularization and Random Survival Forests</article_title>
<author>Joffe</author>
<journal_title>Blood</journal_title>
<issue>21</issue>
<volume>122</volume>
<doi>10.1182/blood.V122.21.1728.1728</doi>
<issn>0006-4971</issn>
<cYear>2013</cYear>
<unstructured_citation>Joffe, E., Coombes, K. R., Qiu, Y. H., Yoo, S. Y., Zhang, N., Bernstam, E. V., &amp; Kornblau, S. M. (2013). Survival Prediction In High Dimensional Datasets – Comparative Evaluation Of Lasso Regularization and Random Survival Forests. Blood, 122(21), 1728–1728. https://doi.org/10.1182/blood.V122.21.1728.1728</unstructured_citation>
</citation>
<citation key="harrell2015">
<volume_title>Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis</volume_title>
<author>Harrell</author>
<doi>10.1007/978-3-319-19425-7</doi>
<isbn>978-3-319-19425-7</isbn>
<cYear>2015</cYear>
<unstructured_citation>Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-19425-7</unstructured_citation>
</citation>
<citation key="ishwaran2008">
<article_title>Random survival forests</article_title>
<author>Ishwaran</author>
<journal_title>The Annals of Applied Statistics</journal_title>
<issue>3</issue>
<volume>2</volume>
<doi>10.1214/08-AOAS169</doi>
<issn>1932-6157</issn>
<cYear>2008</cYear>
<unstructured_citation>Ishwaran, H., Kogalur, U. B., Blackstone, E. H., &amp; Lauer, M. S. (2008). Random survival forests. The Annals of Applied Statistics, 2(3). https://doi.org/10.1214/08-AOAS169</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07213/10.21105.joss.07213.pdf
Binary file not shown.
Loading