Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport feature/multi_tenancy] add titan embeeding v2 to blueprint #3012

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ PUT /_cluster/settings

If you are using self-managed Opensearch, you should supply AWS credentials:

If you are using Titan Text Embedding V2, change "model" to `amazon.titan-embed-text-v2:0`
```json
POST /_plugins/_ml/connectors/_create
{
Expand All @@ -28,7 +29,8 @@ POST /_plugins/_ml/connectors/_create
"protocol": "aws_sigv4",
"parameters": {
"region": "<PLEASE ADD YOUR AWS REGION HERE>",
"service_name": "bedrock"
"service_name": "bedrock",
"model": "amazon.titan-embed-text-v1"
},
"credential": {
"access_key": "<PLEASE ADD YOUR AWS ACCESS KEY HERE>",
Expand All @@ -39,14 +41,14 @@ POST /_plugins/_ml/connectors/_create
{
"action_type": "predict",
"method": "POST",
"url": "https://bedrock-runtime.us-east-1.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"url": "https://bedrock-runtime.${parameters.region}.amazonaws.com/model/${parameters.model}/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
"pre_process_function": "connector.pre_process.bedrock.embedding",
"post_process_function": "connector.post_process.bedrock.embedding"
}
]
}
Expand All @@ -64,7 +66,8 @@ POST /_plugins/_ml/connectors/_create
"protocol": "aws_sigv4",
"parameters": {
"region": "<PLEASE ADD YOUR AWS REGION HERE>",
"service_name": "bedrock"
"service_name": "bedrock",
"model": "amazon.titan-embed-text-v1"
},
"credential": {
"roleArn": "<PLEASE ADD YOUR AWS ROLE ARN HERE>"
Expand All @@ -79,8 +82,8 @@ POST /_plugins/_ml/connectors/_create
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
"pre_process_function": "connector.pre_process.bedrock.embedding",
"post_process_function": "connector.post_process.bedrock.embedding"
}
]
}
Expand Down Expand Up @@ -151,7 +154,7 @@ POST /_plugins/_ml/models/sKR9PIsBQRofe4CSlUov/_predict
}
```

Sample response:
Sample response of Titan Text Embedding V1:
```json
{
"inference_results": [
Expand All @@ -177,3 +180,29 @@ Sample response:
}
```

Sample response of Titan Text Embedding V2:
```json
{
"inference_results": [
{
"output": [
{
"name": "sentence_embedding",
"data_type": "FLOAT32",
"shape": [
1024
],
"data": [
-0.041385926,
0.08503958,
0.0026220535,
...
]
}
],
"status_code": 200
}
]
}
```

Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ PUT my_books
Create sub-pipeline to generate embedding for one item in the array.

This pipeline contains 3 processors
- set processor: The `text_embedding` processor is unable to identify "_ingest._value.title". You need to copy "_ingest._value.title" to a temporary field for text_embedding to process it.
- set processor: The `text_embedding` processor is unable to identify "_ingest._value.title". You need to copy "_ingest._value.title" to a non-existing temporary field for text_embedding to process it.
- text_embedding processor: convert value of the temporary field to embedding
- remove processor: remove temporary field
```
Expand Down Expand Up @@ -228,7 +228,6 @@ Response
"description": "This is first book"
},
{
"title": "second book",
"description": "This is second book"
}
]
Expand Down
Loading