-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_summary.py
58 lines (43 loc) · 1.78 KB
/
data_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from sklearn.cluster import KMeans
#*** cs229_kmeans.py
# Summary: Contains and tests k-means on various representations of the dataset
#***
import util
#** Logger usage:
# logger.debug(): For all parameters useful in debugging (i.e. matrix shapes, important scalars, etc.)
# logger.info(): For all information on what the solver is doing
# logger.warning(): For all information that might cause known instability (i.e. underflow/overflow, etc.). Can also be used for places with implementations to-be-defined
# logger.error(): For notifying failed attempts at calculation (i.e. any exception, bad data, etc.)
#***
def pgperlevel(levels):
return np.sum(levels, axis=0)
def wordsperlevel(matrix, levels):
wordsperpage= np.sum(matrix, axis=1)
print("wordsperpage", wordsperpage.shape)
wordsperlevel= (levels.T * wordsperpage)
print("wordsperlevel", wordsperlevel.shape, wordsperlevel[:,1])
print("wordsperpage", wordsperpage[1,])
print("levels", levels[1,:])
wordsperpage= np.nanmean(np.where(wordsperlevel!=0,wordsperlevel,np.nan),1)
return wordsperpage
def main():
matrix, levels, _ = util.load_dataset()
print(levels.shape)
print(matrix.shape)
levelcount=pgperlevel(levels)
print(levelcount)
# np.savetxt('pagesperlevel.txt', levelcount,fmt='%i')
wrdpage= wordsperlevel(matrix, levels)
matrix_pooled, levels_pooled, _ = util.load_dataset_pooled()
print("pooled")
print(levels_pooled.shape)
print(matrix_pooled.shape)
levelcount_p=pgperlevel(levels_pooled)
print(levelcount_p)
wrdpage_p= wordsperlevel(matrix_pooled, levels_pooled)
print("pooled words per page", wrdpage_p)
# np.savetxt('wordsperlevelpooled.txt', wrdpage_p,fmt='%i')
# Testing function
if __name__ == '__main__':
main()