Skip to content
This repository has been archived by the owner on Nov 30, 2022. It is now read-only.

Web Scaping Indeed.com for Job Postings in Data Science #340

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added Web-Scraping/Indeed/.DS_Store
Binary file not shown.
2 changes: 2 additions & 0 deletions Web-Scraping/Indeed/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# Web-Scraping-Indeed
Simple Webscraper using BeautifulSoup and Requests Libraries to scrape off Job Postings on Indeed
45 changes: 45 additions & 0 deletions Web-Scraping/Indeed/Requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: osx-64
@EXPLICIT
https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2020.12.5-h033912b_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libcxx-11.0.0-h4c3b8ed_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-11.0.0-h73239a0_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.2-h2e338ed_4.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/tzdata-2020d-h516909a_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.5-haf1e3a3_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/zlib-1.2.11-h7795811_1010.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libffi-3.3-h046ec9c_2.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-9.3.0-h7cc5361_13.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/openssl-1.1.1i-h35c211d_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/readline-8.0-h0678c8f_2.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.10-h0419947_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-h7cc5361_13.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/sqlite-3.34.0-h17101e1_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.12-openmp_h54245bb_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/python-3.9.1-h1d169a7_1_cpython.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/idna-2.10-pyh9f0ad1d_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-3_openblas.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/pycparser-2.20-pyh9f0ad1d_2.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.9-1_cp39.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/pytz-2020.4-pyhd8ed1ab_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/six-1.15.0-pyh9f0ad1d_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.0.1-py_1.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/wheel-0.36.2-pyhd3deb0d_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.9.3-pyhb0f4dca_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/certifi-2020.12.5-py39h6e9494a_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/cffi-1.14.4-py39h7786acb_1.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/chardet-4.0.0-py39h6e9494a_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-3_openblas.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-3_openblas.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/pysocks-1.7.1-py39h2c36a5b_2.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.1-py_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/brotlipy-0.7.0-py39h66d5b7b_1001.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/cryptography-3.3.1-py39h79a2c39_0.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/numpy-1.19.4-py39he588a01_2.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/setuptools-49.6.0-py39h2c36a5b_2.tar.bz2
https://conda.anaconda.org/conda-forge/osx-64/pandas-1.1.5-py39h089d6f7_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/pip-20.3.3-pyhd8ed1ab_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/pyopenssl-20.0.1-pyhd8ed1ab_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/urllib3-1.26.2-pyhd8ed1ab_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/requests-2.25.1-pyhd3deb0d_0.tar.bz2
135 changes: 135 additions & 0 deletions Web-Scraping/Indeed/WebScraping.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from bs4 import BeautifulSoup\n",
"import requests\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def extract(page):\n",
" \"\"\" parsing HTML page from URL \"\"\"\n",
" headers= {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36'}\n",
" url= f'https://in.indeed.com/jobs?q=data+science&l=Bangalore%2C+Karnataka&start={page}'\n",
" r=requests.get(url,headers)\n",
" soup=BeautifulSoup(r.content,'html.parser')\n",
" return soup"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def transform(soup):\n",
" \"\"\"Extracing relevant objects from page source (HTML)\"\"\"\n",
" divs=soup.find_all('div', class_='jobsearch-SerpJobCard')\n",
" for item in divs:\n",
" title=item.find('a').text.strip()\n",
" company= item.find('span', class_='company').text.strip()\n",
" try:\n",
" salary=item.find('span', class_= 'salaryText').text().strip()\n",
" except:\n",
" salary= ''\n",
" summary=item.find('div', {'class':'summary'}).text.strip().replace('\\n','')\n",
"\n",
" job= {\n",
" 'Job_Title': title,\n",
" 'Company_Name': company,\n",
" 'Salary': salary,\n",
" 'Summary': summary\n",
" }\n",
" joblist.append(job)\n",
" return "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"joblist=[]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Getting Page 0\n",
"Getting Page 10\n",
"Getting Page 20\n",
"Getting Page 30\n",
"Getting Page 40\n",
"75\n"
]
}
],
"source": [
"for i in range(0,50,10):\n",
" print(f'Getting Page {i}')\n",
" c=extract(0)\n",
" transform(c)\n",
"\n",
"print(len(joblist))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"df=pd.DataFrame(joblist)\n",
"df.head()\n",
"df.to_csv('indeed_jobs.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}