Skip to content

Commit

Permalink
Attempt at mardown conversion
Browse files Browse the repository at this point in the history
  • Loading branch information
danlwill authored Jan 9, 2025
1 parent c03da3f commit 9e2de3e
Showing 1 changed file with 95 additions and 0 deletions.
95 changes: 95 additions & 0 deletions applications/CHAC_anisotropy/CHAC_anisotropy.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
## PRISMS-PF: CHAC Anisotropy (with Coupled CH-AC Dynamics)
Consider a free energy expression of the form:

$$
\begin{equation}
\Pi(c, \eta, \nabla \eta) = \int_{\Omega} \left( f_{\alpha}(1-H) + f_{\beta}H \right) + \frac{1}{2} | \gamma( \mathbf{n} ) \nabla \eta |^2 ~dV
\end{equation}
$$

where $f_{\alpha}$ and $f_{\beta}$ are the free energy densities corresponding to $\alpha$ and $\beta$ phases, respectively, and are functions of composition $c$. $H$ is a function of the structural order parameter $\eta$. The interface normal vector $\mathbf{n}$ is given by

$$
\begin{equation}
\mathbf{n} = \frac{\nabla \eta}{|\nabla \eta|}
\end{equation}
$$

for $\nabla \eta \ne \mathbf{0}$, and $\mathbf{n} = \mathbf{0}$ when $\nabla \eta = \mathbf{0}$.

## Variational Treatment

Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:

$$
\begin{align}
\mu_{c} &= (f_{\alpha,c}(1-H)+f_{\beta,c}H) \\
\mu_{\eta} &= (f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m}
\end{align}
$$

The components of the anisotropic gradient $\mathbf{m}$ are given by

$$
\begin{equation}
m_i = \gamma(\mathbf{n}) \left( \nabla \eta + |\nabla \eta| (\delta_{ij}-n_i n_j) \frac{\partial \gamma (\mathbf{n})}{n_j} \right),
\end{equation}
$$

where $\delta_{ij}$ is the Kronecker delta.

## Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:

$$
\begin{align}
\frac{\partial c}{\partial t} &= -~\nabla \cdot (-M_c\nabla \mu_c)\\
&=M_c~\nabla \cdot (\nabla (f_{\alpha,c}(1-H)+f_{\beta,c}H))
\end{align}
$$

and the PDE for Allen-Cahn dynamics is given by:

$$
\begin{align}
\frac{\partial \eta}{\partial t} &= -M_\eta \mu_\eta \\
&=-M_\eta ~ ((f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m})
\end{align}
$$

where $M_c$ and $M_\eta$ are the constant mobilities.

## Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:

$$
\begin{align}
\eta^{n+1} &= \eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \nabla \cdot \mathbf{m}^n) \\
c^{n+1} &= c^{n} + \Delta t M_{\eta}~\nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n}))
\end{align}
$$

In the weak formulation, considering an arbitrary variation $w$, the above equations can be expressed as residual equations:

$$
\begin{align}
\int_{\Omega} w \eta^{n+1} ~dV &= \int_{\Omega} w \eta^{n} - w \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \kappa \Delta \eta^n) ~dV\\
&= \int_{\Omega} w \left( \underbrace{\eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n)}_{r_{\eta}} \right)+ \nabla w \cdot \underbrace{(- \Delta t M_{\eta}) \mathbf{m}^n}_{r_{\eta x}} ~dV
\end{align}
$$

and

$$
\begin{align}
\int_{\Omega} w c^{n+1} ~dV &= \int_{\Omega} w c^{n} + w \Delta t M_{c}~ \nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n})) ~dV\\
&= \int_{\Omega} w \underbrace{c^{n}}_{r_c} + \nabla w \underbrace{(-\Delta t M_{c})~ [~(f_{\alpha,cc}^n(1-H^{n})+f_{\beta,cc}^n H^{n}) \nabla c + ~((f_{\beta,c}^n-f_{\alpha,c}^n)H^{n}_{,\eta} \nabla \eta) ] }_{r_{cx}} ~dV
\end{align}
$$

The above values of $r_{\eta}$, $r_{\eta x}$, $r_{c}$ and $r_{cx}$ are used to define the residuals in the following equations file:
`applications/CHAC\_anisotropy/equations.h`


0 comments on commit 9e2de3e

Please sign in to comment.