-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
## PRISMS-PF: CHAC Anisotropy (with Coupled CH-AC Dynamics) | ||
Consider a free energy expression of the form: | ||
|
||
$$ | ||
\begin{equation} | ||
\Pi(c, \eta, \nabla \eta) = \int_{\Omega} \left( f_{\alpha}(1-H) + f_{\beta}H \right) + \frac{1}{2} | \gamma( \mathbf{n} ) \nabla \eta |^2 ~dV | ||
\end{equation} | ||
$$ | ||
|
||
where $f_{\alpha}$ and $f_{\beta}$ are the free energy densities corresponding to $\alpha$ and $\beta$ phases, respectively, and are functions of composition $c$. $H$ is a function of the structural order parameter $\eta$. The interface normal vector $\mathbf{n}$ is given by | ||
|
||
$$ | ||
\begin{equation} | ||
\mathbf{n} = \frac{\nabla \eta}{|\nabla \eta|} | ||
\end{equation} | ||
$$ | ||
|
||
for $\nabla \eta \ne \mathbf{0}$, and $\mathbf{n} = \mathbf{0}$ when $\nabla \eta = \mathbf{0}$. | ||
|
||
## Variational Treatment | ||
|
||
Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials: | ||
|
||
$$ | ||
\begin{align} | ||
\mu_{c} &= (f_{\alpha,c}(1-H)+f_{\beta,c}H) \\ | ||
\mu_{\eta} &= (f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m} | ||
\end{align} | ||
$$ | ||
|
||
The components of the anisotropic gradient $\mathbf{m}$ are given by | ||
|
||
$$ | ||
\begin{equation} | ||
m_i = \gamma(\mathbf{n}) \left( \nabla \eta + |\nabla \eta| (\delta_{ij}-n_i n_j) \frac{\partial \gamma (\mathbf{n})}{n_j} \right), | ||
\end{equation} | ||
$$ | ||
|
||
where $\delta_{ij}$ is the Kronecker delta. | ||
|
||
## Kinetics | ||
|
||
Now the PDE for Cahn-Hilliard dynamics is given by: | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial c}{\partial t} &= -~\nabla \cdot (-M_c\nabla \mu_c)\\ | ||
&=M_c~\nabla \cdot (\nabla (f_{\alpha,c}(1-H)+f_{\beta,c}H)) | ||
\end{align} | ||
$$ | ||
|
||
and the PDE for Allen-Cahn dynamics is given by: | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial \eta}{\partial t} &= -M_\eta \mu_\eta \\ | ||
&=-M_\eta ~ ((f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m}) | ||
\end{align} | ||
$$ | ||
|
||
where $M_c$ and $M_\eta$ are the constant mobilities. | ||
|
||
## Time discretization | ||
|
||
Considering forward Euler explicit time stepping, we have the time discretized kinetics equation: | ||
|
||
$$ | ||
\begin{align} | ||
\eta^{n+1} &= \eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \nabla \cdot \mathbf{m}^n) \\ | ||
c^{n+1} &= c^{n} + \Delta t M_{\eta}~\nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n})) | ||
\end{align} | ||
$$ | ||
|
||
In the weak formulation, considering an arbitrary variation $w$, the above equations can be expressed as residual equations: | ||
|
||
$$ | ||
\begin{align} | ||
\int_{\Omega} w \eta^{n+1} ~dV &= \int_{\Omega} w \eta^{n} - w \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \kappa \Delta \eta^n) ~dV\\ | ||
&= \int_{\Omega} w \left( \underbrace{\eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n)}_{r_{\eta}} \right)+ \nabla w \cdot \underbrace{(- \Delta t M_{\eta}) \mathbf{m}^n}_{r_{\eta x}} ~dV | ||
\end{align} | ||
$$ | ||
|
||
and | ||
|
||
$$ | ||
\begin{align} | ||
\int_{\Omega} w c^{n+1} ~dV &= \int_{\Omega} w c^{n} + w \Delta t M_{c}~ \nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n})) ~dV\\ | ||
&= \int_{\Omega} w \underbrace{c^{n}}_{r_c} + \nabla w \underbrace{(-\Delta t M_{c})~ [~(f_{\alpha,cc}^n(1-H^{n})+f_{\beta,cc}^n H^{n}) \nabla c + ~((f_{\beta,c}^n-f_{\alpha,c}^n)H^{n}_{,\eta} \nabla \eta) ] }_{r_{cx}} ~dV | ||
\end{align} | ||
$$ | ||
|
||
The above values of $r_{\eta}$, $r_{\eta x}$, $r_{c}$ and $r_{cx}$ are used to define the residuals in the following equations file: | ||
`applications/CHAC\_anisotropy/equations.h` | ||
|
||
|