This crate is a Rust implementation of the JSON-LD data interchange format.
Linked Data (LD) is a World Wide Web Consortium (W3C) initiative built upon standard Web technologies to create an interrelated network of datasets across the Web. The JavaScript Object Notation (JSON) is a widely used, simple, unstructured data serialization format to describe data objects in a human readable way. JSON-LD brings these two technologies together, adding semantics to JSON to create a lightweight data serialization format that can organize data and help Web applications to inter-operate at a large scale.
Before diving into the various processing functions usage, here are some must-know design choices of this library.
One important feature of this library is the preservation of the code mapping information extracted from any source JSON document through the diverse transformation algorithms. This is done using:
- The
locspan
parsing utility library that provides theMeta
type associating a value to some metadata. The metadata is intended to be code mapping information, but you ultimately can decide what it is. - The
json_syntax
library that parse JSON documents while preserving the code mapping information using theMeta
type.
This is particularly useful to provide error messages that can pinpoint the source of the error in the original source file.
Here is a example usage of the Meta
that may come in handy when using
this library.
use locspan::Meta;
// build a value associated with its metadata.
let value_with_metadata = Meta("value", "metadata");
// get a reference to the value.
let value = value_with_metadata.value();
// get a reference to the metadata.
let metadata = value_with_metadata.metadata();
// deconstruct.
let Meta(value, metadata) = value_with_metadata;
This library gives you the opportunity to use any datatype you want to
represent IRIs an Blank Node Identifiers. Most types have them
parameterized.
To avoid unnecessary allocations and expensive comparisons, it is highly
recommended to use a cheap, lightweight datatype such as
rdf_types::vocabulary::Index
. This type will represent each distinct
IRI/blank node identifier with a unique index. In this case a
rdf_types::IndexVocabulary
that maps each index back/to its
original IRI/Blank identifier representation can be passed to every
function.
You can also use your own index type, with your own
rdf_types::Vocabulary
implementation.
Since using vocabularies separates IRIs and Blank ids from their textual
representation, it complicates displaying data using them.
Fortunately many types defined by json-ld
implement the
contextual::DisplayWithContext
trait that allow displaying value with
a "context", which here would be the vocabulary.
By importing the contextual::WithContext
which provides the with
method you can display such value like this:
use static_iref::iri;
use rdf_types::IriVocabularyMut;
use contextual::WithContext;
let mut vocabulary: rdf_types::IndexVocabulary = rdf_types::IndexVocabulary::new();
let i = vocabulary.insert(iri!("https://docs.rs/contextual"));
let value = rdf_types::Subject::Iri(i);
println!("{}", value.with(&vocabulary))
The entry point for this library is the JsonLdProcessor
trait
that provides an access to all the JSON-LD transformation algorithms
(context processing, expansion, compaction, etc.).
If you want to explore and/or transform ExpandedDocument
s, you may also
want to check out the [Object
] type representing a JSON object.
If you want to expand a JSON-LD document, first describe the document to
be expanded using either RemoteDocument
or RemoteDocumentReference
:
RemoteDocument
wraps the JSON representation of the document alongside its remote URL.RemoteDocumentReference
may represent only an URL, letting some loader fetching the remote document by dereferencing the URL.
After that, you can simply use the JsonLdProcessor::expand
function on
the remote document.
use iref::IriBuf;
use static_iref::iri;
use locspan::Span;
use json_ld::{JsonLdProcessor, Options, RemoteDocument, syntax::{Value, Parse}};
// Create a "remote" document by parsing a file manually.
let input = RemoteDocument::new(
// We use `IriBuf` as IRI type.
Some(iri!("https://example.com/sample.jsonld").to_owned()),
// Optional content type.
Some("application/ld+json".parse().unwrap()),
// Parse the file.
Value::parse_str(r#"
{
"@context": {
"name": "http://xmlns.com/foaf/0.1/name"
},
"@id": "https://www.rust-lang.org",
"name": "Rust Programming Language"
}"#,
|span| span // keep the source `Span` of each element as metadata.
).expect("unable to parse file")
);
// Use `NoLoader` as we won't need to load any remote document.
let mut loader = json_ld::NoLoader::<IriBuf, Span>::new();
// Expand the "remote" document.
let expanded = input
.expand(&mut loader)
.await
.expect("expansion failed");
for object in expanded.into_value() {
if let Some(id) = object.id() {
let name = object.as_node().unwrap()
.get_any(&iri!("http://xmlns.com/foaf/0.1/name")).unwrap()
.as_str().unwrap();
println!("id: {id}");
println!("name: {name}");
}
}
Here is another example using RemoteDocumentReference
.
use static_iref::iri;
use json_ld::{JsonLdProcessor, Options, RemoteDocumentReference};
let input = RemoteDocumentReference::iri(iri!("https://example.com/sample.jsonld").to_owned());
// Use `FsLoader` to redirect any URL starting with `https://example.com/` to
// the local `example` directory. No HTTP query.
let mut loader = json_ld::FsLoader::default();
loader.mount(iri!("https://example.com/").to_owned(), "examples");
let expanded = input.expand(&mut loader)
.await
.expect("expansion failed");
Lastly, the same example replacing IriBuf
with the lightweight
rdf_types::vocabulary::Index
type.
use rdf_types::{IriVocabularyMut, Subject};
use contextual::WithContext;
// Creates the vocabulary that will map each `rdf_types::vocabulary::Index`
// to an actual `IriBuf`.
let mut vocabulary: rdf_types::IndexVocabulary = rdf_types::IndexVocabulary::new();
let iri_index = vocabulary.insert(iri!("https://example.com/sample.jsonld"));
let input = RemoteDocumentReference::iri(iri_index);
// Use `FsLoader` to redirect any URL starting with `https://example.com/` to
// the local `example` directory. No HTTP query.
let mut loader = json_ld::FsLoader::default();
loader.mount(vocabulary.insert(iri!("https://example.com/")), "examples");
let expanded = input
.expand_with(&mut vocabulary, &mut loader)
.await
.expect("expansion failed");
// `foaf:name` property identifier.
let name_id = Subject::Iri(vocabulary.insert(iri!("http://xmlns.com/foaf/0.1/name")));
for object in expanded.into_value() {
if let Some(id) = object.id() {
let name = object.as_node().unwrap()
.get_any(&name_id).unwrap()
.as_value().unwrap()
.as_str().unwrap();
println!("id: {}", id.with(&vocabulary));
println!("name: {name}");
}
}
The JSON-LD Compaction is a transformation that consists in applying a context to a given JSON-LD document reducing its size. There are two ways to get a compact JSON-LD document with this library depending on your starting point:
- If you want to get a compact representation for an arbitrary remote
document, simply use the
JsonLdProcessor::compact
(orJsonLdProcessor::compact_with
) method. - Otherwise to compact an
ExpandedDocument
you can use theCompact::compact
method.
Here is an example compaction an arbitrary RemoteDocumentReference
using JsonLdProcessor::compact
.
use static_iref::iri;
use json_ld::{JsonLdProcessor, Options, RemoteDocumentReference, syntax::Print};
let input = RemoteDocumentReference::iri(iri!("https://example.com/sample.jsonld").to_owned());
let context = RemoteDocumentReference::context_iri(iri!("https://example.com/context.jsonld").to_owned());
// Use `FsLoader` to redirect any URL starting with `https://example.com/` to
// the local `example` directory. No HTTP query.
let mut loader = json_ld::FsLoader::default();
loader.mount(iri!("https://example.com/").to_owned(), "examples");
let compact = input
.compact(context, &mut loader)
.await
.expect("compaction failed");
println!("output: {}", compact.pretty_print());
The JSON-LD Flattening is a transformation that consists in moving nested nodes out. The result is a list of all the nodes declared in the document. There are two ways to flatten JSON-LD document with this library depending on your starting point:
- If you want to get a compact representation for an arbitrary remote
document, simply use the
JsonLdProcessor::flatten
(orJsonLdProcessor::flatten_with
) method. This will return a JSON-LD document. - Otherwise to compact an
ExpandedDocument
you can use theFlatten::flatten
(orFlatten::flatten_with
) method. This will return the list of nodes as aFlattenedDocument
.
Flattening requires assigning an identifier to nested anonymous nodes,
which is why the flattening functions take an rdf_types::MetaGenerator
as parameter. This generator is in charge of creating new fresh identifiers
(with their metadata). The most common generator is
rdf_types::generator::Blank
that creates blank node identifiers.
Here is an example compaction an arbitrary RemoteDocumentReference
using JsonLdProcessor::flatten
.
use static_iref::iri;
use json_ld::{JsonLdProcessor, Options, RemoteDocumentReference, syntax::Print};
use locspan::{Location, Span};
let input = RemoteDocumentReference::iri(iri!("https://example.com/sample.jsonld").to_owned());
// Use `FsLoader` to redirect any URL starting with `https://example.com/` to
// the local `example` directory. No HTTP query.
let mut loader = json_ld::FsLoader::default();
loader.mount(iri!("https://example.com/").to_owned(), "examples");
let mut generator = rdf_types::generator::Blank::new().with_metadata(
// Each blank id will be associated to the document URL with a dummy span.
Location::new(iri!("https://example.com/").to_owned(), Span::default())
);
let nodes = input
.flatten(&mut generator, &mut loader)
.await
.expect("flattening failed");
println!("output: {}", nodes.pretty_print());
Many thanks to Spruce for sponsoring this project!
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.