-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added benchmark script * Added cupy benchmark script
- Loading branch information
Showing
2 changed files
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
""" | ||
This script is a test for ptychographic reconstruction in the absence | ||
of actual data. It uses the test Scan class | ||
`ptypy.core.data.MoonFlowerScan` to provide "data". | ||
""" | ||
import ptypy | ||
from ptypy.core import Ptycho | ||
from ptypy import utils as u | ||
|
||
import tempfile | ||
import argparse | ||
|
||
ptypy.load_gpu_engines("cupy") | ||
tmpdir = tempfile.gettempdir() | ||
|
||
def run_benchmark(): | ||
opt = parse() | ||
p = get_params(opt) | ||
P = Ptycho(p,level=5) | ||
print_results(P) | ||
|
||
|
||
def parse(): | ||
parser = argparse.ArgumentParser(description="A script to benchmark ptypy using the moonflower simulation") | ||
parser.add_argument("-n", "--frames", type=int, help="Nr. of data frames") | ||
parser.add_argument("-s", "--shape", type=int, help="1D shape of each data frame") | ||
parser.add_argument("-i", "--iterations", type=int, help="Nr. of iterations") | ||
parser.add_argument("-f", "--fftlib", type=str, default="cupy") | ||
args = parser.parse_args() | ||
return args | ||
|
||
def get_params(args): | ||
|
||
p = u.Param() | ||
|
||
# for verbose output | ||
p.verbose_level = "info" | ||
|
||
# set home path | ||
p.io = u.Param() | ||
p.io.home = "/".join([tmpdir, "ptypy"]) | ||
|
||
# saving intermediate results | ||
p.io.autosave = u.Param(active=False) | ||
|
||
# opens plotting GUI if interaction set to active) | ||
p.io.autoplot = u.Param(active=False) | ||
p.io.interaction = u.Param(active=False) | ||
|
||
# Save benchmark timings | ||
p.io.benchmark = "all" | ||
|
||
# max 200 frames (128x128px) of diffraction data | ||
p.scans = u.Param() | ||
p.scans.MF = u.Param() | ||
# now you have to specify which ScanModel to use with scans.XX.name, | ||
# just as you have to give 'name' for engines and PtyScan subclasses. | ||
p.scans.MF.name = 'BlockVanilla' # or 'BlockFull' | ||
p.scans.MF.data= u.Param() | ||
p.scans.MF.data.name = 'MoonFlowerScan' | ||
p.scans.MF.data.shape = args.shape | ||
p.scans.MF.data.num_frames = args.frames | ||
p.scans.MF.data.save = None | ||
|
||
# position distance in fraction of illumination frame | ||
p.scans.MF.data.density = 0.2 | ||
# total number of photon in empty beam | ||
p.scans.MF.data.photons = 1e8 | ||
# Gaussian FWHM of possible detector blurring | ||
p.scans.MF.data.psf = 0. | ||
|
||
# attach a reconstrucion engine | ||
p.engines = u.Param() | ||
p.engines.engine00 = u.Param() | ||
p.engines.engine00.name = 'DM_cupy' | ||
p.engines.engine00.numiter = args.iterations | ||
p.engines.engine00.fft_lib = args.fftlib | ||
|
||
return p | ||
|
||
def print_results(ptycho): | ||
# Print benchmarking results | ||
if (ptycho.p.io.benchmark == "all") and u.parallel.master: | ||
print("\nBenchmark:") | ||
print("==========") | ||
total = 0 | ||
for k,v in ptycho.benchmark.items(): | ||
total += v | ||
print(f"{k}: {v:.02f} s") | ||
print(f"Total: {total:.02f} s") | ||
|
||
# prepare and run | ||
if __name__ == "__main__": | ||
run_benchmark() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
""" | ||
This script is a test for ptychographic reconstruction in the absence | ||
of actual data. It uses the test Scan class | ||
`ptypy.core.data.MoonFlowerScan` to provide "data". | ||
""" | ||
from ptypy.core import Ptycho | ||
from ptypy import utils as u | ||
|
||
import tempfile | ||
import argparse | ||
|
||
tmpdir = tempfile.gettempdir() | ||
|
||
def run_benchmark(): | ||
opt = parse() | ||
p = get_params(opt) | ||
P = Ptycho(p,level=5) | ||
print_results(P) | ||
|
||
|
||
def parse(): | ||
parser = argparse.ArgumentParser(description="A script to benchmark ptypy using the moonflower simulation") | ||
parser.add_argument("-n", "--frames", type=int, help="Nr. of data frames") | ||
parser.add_argument("-s", "--shape", type=int, help="1D shape of each data frame") | ||
parser.add_argument("-i", "--iterations", type=int, help="Nr. of iterations") | ||
args = parser.parse_args() | ||
return args | ||
|
||
def get_params(args): | ||
|
||
p = u.Param() | ||
|
||
# for verbose output | ||
p.verbose_level = "info" | ||
|
||
# set home path | ||
p.io = u.Param() | ||
p.io.home = "/".join([tmpdir, "ptypy"]) | ||
|
||
# saving intermediate results | ||
p.io.autosave = u.Param(active=False) | ||
|
||
# opens plotting GUI if interaction set to active) | ||
p.io.autoplot = u.Param(active=False) | ||
p.io.interaction = u.Param(active=False) | ||
|
||
# Save benchmark timings | ||
p.io.benchmark = "all" | ||
|
||
# max 200 frames (128x128px) of diffraction data | ||
p.scans = u.Param() | ||
p.scans.MF = u.Param() | ||
# now you have to specify which ScanModel to use with scans.XX.name, | ||
# just as you have to give 'name' for engines and PtyScan subclasses. | ||
p.scans.MF.name = 'BlockVanilla' # or 'BlockFull' | ||
p.scans.MF.data= u.Param() | ||
p.scans.MF.data.name = 'MoonFlowerScan' | ||
p.scans.MF.data.shape = args.shape | ||
p.scans.MF.data.num_frames = args.frames | ||
p.scans.MF.data.save = None | ||
|
||
# position distance in fraction of illumination frame | ||
p.scans.MF.data.density = 0.2 | ||
# total number of photon in empty beam | ||
p.scans.MF.data.photons = 1e8 | ||
# Gaussian FWHM of possible detector blurring | ||
p.scans.MF.data.psf = 0. | ||
|
||
# attach a reconstrucion engine | ||
p.engines = u.Param() | ||
p.engines.engine00 = u.Param() | ||
p.engines.engine00.name = 'DM' | ||
p.engines.engine00.numiter = args.iterations | ||
|
||
return p | ||
|
||
def print_results(ptycho): | ||
# Print benchmarking results | ||
if (ptycho.p.io.benchmark == "all") and u.parallel.master: | ||
print("\nBenchmark:") | ||
print("==========") | ||
total = 0 | ||
for k,v in ptycho.benchmark.items(): | ||
total += v | ||
print(f"{k}: {v:.02f} s") | ||
print(f"Total: {total:.02f} s") | ||
|
||
# prepare and run | ||
if __name__ == "__main__": | ||
run_benchmark() |