Skip to content

Commit

Permalink
Benchmarking scripts (#566)
Browse files Browse the repository at this point in the history
* Added benchmark script

* Added cupy benchmark script
  • Loading branch information
daurer authored Aug 2, 2024
1 parent f6e20fd commit b83b0b0
Show file tree
Hide file tree
Showing 2 changed files with 184 additions and 0 deletions.
94 changes: 94 additions & 0 deletions benchmark/ptypy_moonflower_script_cupy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
"""
This script is a test for ptychographic reconstruction in the absence
of actual data. It uses the test Scan class
`ptypy.core.data.MoonFlowerScan` to provide "data".
"""
import ptypy
from ptypy.core import Ptycho
from ptypy import utils as u

import tempfile
import argparse

ptypy.load_gpu_engines("cupy")
tmpdir = tempfile.gettempdir()

def run_benchmark():
opt = parse()
p = get_params(opt)
P = Ptycho(p,level=5)
print_results(P)


def parse():
parser = argparse.ArgumentParser(description="A script to benchmark ptypy using the moonflower simulation")
parser.add_argument("-n", "--frames", type=int, help="Nr. of data frames")
parser.add_argument("-s", "--shape", type=int, help="1D shape of each data frame")
parser.add_argument("-i", "--iterations", type=int, help="Nr. of iterations")
parser.add_argument("-f", "--fftlib", type=str, default="cupy")
args = parser.parse_args()
return args

def get_params(args):

p = u.Param()

# for verbose output
p.verbose_level = "info"

# set home path
p.io = u.Param()
p.io.home = "/".join([tmpdir, "ptypy"])

# saving intermediate results
p.io.autosave = u.Param(active=False)

# opens plotting GUI if interaction set to active)
p.io.autoplot = u.Param(active=False)
p.io.interaction = u.Param(active=False)

# Save benchmark timings
p.io.benchmark = "all"

# max 200 frames (128x128px) of diffraction data
p.scans = u.Param()
p.scans.MF = u.Param()
# now you have to specify which ScanModel to use with scans.XX.name,
# just as you have to give 'name' for engines and PtyScan subclasses.
p.scans.MF.name = 'BlockVanilla' # or 'BlockFull'
p.scans.MF.data= u.Param()
p.scans.MF.data.name = 'MoonFlowerScan'
p.scans.MF.data.shape = args.shape
p.scans.MF.data.num_frames = args.frames
p.scans.MF.data.save = None

# position distance in fraction of illumination frame
p.scans.MF.data.density = 0.2
# total number of photon in empty beam
p.scans.MF.data.photons = 1e8
# Gaussian FWHM of possible detector blurring
p.scans.MF.data.psf = 0.

# attach a reconstrucion engine
p.engines = u.Param()
p.engines.engine00 = u.Param()
p.engines.engine00.name = 'DM_cupy'
p.engines.engine00.numiter = args.iterations
p.engines.engine00.fft_lib = args.fftlib

return p

def print_results(ptycho):
# Print benchmarking results
if (ptycho.p.io.benchmark == "all") and u.parallel.master:
print("\nBenchmark:")
print("==========")
total = 0
for k,v in ptycho.benchmark.items():
total += v
print(f"{k}: {v:.02f} s")
print(f"Total: {total:.02f} s")

# prepare and run
if __name__ == "__main__":
run_benchmark()
90 changes: 90 additions & 0 deletions benchmark/ptypy_moonflower_script_numpy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
"""
This script is a test for ptychographic reconstruction in the absence
of actual data. It uses the test Scan class
`ptypy.core.data.MoonFlowerScan` to provide "data".
"""
from ptypy.core import Ptycho
from ptypy import utils as u

import tempfile
import argparse

tmpdir = tempfile.gettempdir()

def run_benchmark():
opt = parse()
p = get_params(opt)
P = Ptycho(p,level=5)
print_results(P)


def parse():
parser = argparse.ArgumentParser(description="A script to benchmark ptypy using the moonflower simulation")
parser.add_argument("-n", "--frames", type=int, help="Nr. of data frames")
parser.add_argument("-s", "--shape", type=int, help="1D shape of each data frame")
parser.add_argument("-i", "--iterations", type=int, help="Nr. of iterations")
args = parser.parse_args()
return args

def get_params(args):

p = u.Param()

# for verbose output
p.verbose_level = "info"

# set home path
p.io = u.Param()
p.io.home = "/".join([tmpdir, "ptypy"])

# saving intermediate results
p.io.autosave = u.Param(active=False)

# opens plotting GUI if interaction set to active)
p.io.autoplot = u.Param(active=False)
p.io.interaction = u.Param(active=False)

# Save benchmark timings
p.io.benchmark = "all"

# max 200 frames (128x128px) of diffraction data
p.scans = u.Param()
p.scans.MF = u.Param()
# now you have to specify which ScanModel to use with scans.XX.name,
# just as you have to give 'name' for engines and PtyScan subclasses.
p.scans.MF.name = 'BlockVanilla' # or 'BlockFull'
p.scans.MF.data= u.Param()
p.scans.MF.data.name = 'MoonFlowerScan'
p.scans.MF.data.shape = args.shape
p.scans.MF.data.num_frames = args.frames
p.scans.MF.data.save = None

# position distance in fraction of illumination frame
p.scans.MF.data.density = 0.2
# total number of photon in empty beam
p.scans.MF.data.photons = 1e8
# Gaussian FWHM of possible detector blurring
p.scans.MF.data.psf = 0.

# attach a reconstrucion engine
p.engines = u.Param()
p.engines.engine00 = u.Param()
p.engines.engine00.name = 'DM'
p.engines.engine00.numiter = args.iterations

return p

def print_results(ptycho):
# Print benchmarking results
if (ptycho.p.io.benchmark == "all") and u.parallel.master:
print("\nBenchmark:")
print("==========")
total = 0
for k,v in ptycho.benchmark.items():
total += v
print(f"{k}: {v:.02f} s")
print(f"Total: {total:.02f} s")

# prepare and run
if __name__ == "__main__":
run_benchmark()

0 comments on commit b83b0b0

Please sign in to comment.