Skip to content

Commit

Permalink
Update RainFARM example following #311 (#367)
Browse files Browse the repository at this point in the history
* Update RainFARM example following #311
  • Loading branch information
dnerini authored Jul 2, 2024
1 parent 9d4e169 commit 3121cbf
Showing 1 changed file with 107 additions and 61 deletions.
168 changes: 107 additions & 61 deletions examples/rainfarm_downscale.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,43 +10,71 @@
al. (2006). The method can represent the realistic small-scale variability of the
downscaled precipitation field by means of Gaussian random fields.
Steps:
1. Read the input precipitation data.
2. Upscale the precipitation field.
3. Downscale the field to its original resolution using RainFARM with defaults.
4. Downscale with smoothing.
5. Downscale with spectral fusion.
6. Downscale with smoothing and spectral fusion.
References:
Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006: RainFARM:
Rainfall downscaling by a filtered autoregressive model. J. Hydrometeor., 7,
724–738.
D D'Onofrio, E Palazzi, J von Hardenberg, A Provenzale, and S Calmanti, 2014:
Stochastic rainfall downscaling of climate models. J. Hydrometeorol., 15(2):830–843.
"""

import matplotlib.pyplot as plt
import numpy as np
import os
from pprint import pprint
import logging

from pysteps import io, rcparams
from pysteps.utils import aggregate_fields_space, square_domain, to_rainrate
from pysteps.downscaling import rainfarm
from pysteps.visualization import plot_precip_field

# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

###############################################################################
# Read the input data
# -------------------
#
# As first step, we need to import the precipitation field that we are going
# to use in this example.


def read_precipitation_data(file_path):
"""Read and process precipitation data from a file."""
precip, _, metadata = io.import_mch_gif(
file_path, product="AQC", unit="mm", accutime=5.0
)
precip, metadata = to_rainrate(precip, metadata)
precip, metadata = square_domain(precip, metadata, "crop")
return precip, metadata


# Import the example radar composite
root_path = rcparams.data_sources["mch"]["root_path"]
filename = os.path.join(root_path, "20160711", "AQC161932100V_00005.801.gif")
precip, _, metadata = io.import_mch_gif(
filename, product="AQC", unit="mm", accutime=5.0
)

# Convert to mm/h
precip, metadata = to_rainrate(precip, metadata)

# Reduce to a square domain
precip, metadata = square_domain(precip, metadata, "crop")
# Read and process data
precip, metadata = read_precipitation_data(filename)

# Nicely print the metadata
pprint(metadata)

# Plot the original rainfall field
plot_precip_field(precip, geodata=metadata)
plt.title("Original Rainfall Field")
plt.show()

# Assign the fill value to all the Nans
Expand All @@ -61,60 +89,87 @@
# create a lower resolution field to apply our downscaling method.
# We are going to use a factor of 16 x.


def upscale_field(precip, metadata, scale_factor):
"""Upscale the precipitation field by a given scale factor."""
upscaled_resolution = metadata["xpixelsize"] * scale_factor
precip_lr, metadata_lr = aggregate_fields_space(
precip, metadata, upscaled_resolution
)
return precip_lr, metadata_lr


scale_factor = 16
upscaled_resolution = (
metadata["xpixelsize"] * scale_factor
) # upscaled resolution : 16 km
precip_lr, metadata_lr = aggregate_fields_space(precip, metadata, upscaled_resolution)
precip_lr, metadata_lr = upscale_field(precip, metadata, scale_factor)

# Plot the upscaled rainfall field
plt.figure()
plot_precip_field(precip_lr, geodata=metadata_lr)
plt.title("Upscaled Rainfall Field")
plt.show()

###############################################################################
# Downscale the field
# -------------------
#
# We can now use RainFARM to generate stochastic realizations of the downscaled
# precipitation field.

fig = plt.figure(figsize=(5, 8))
# Set the number of stochastic realizations
num_realizations = 5

# Per realization, generate a stochastically downscaled precipitation field
# and plot it.
# The first time, the spectral slope alpha needs to be estimated. To illustrate
# the sensitivity of this parameter, we are going to plot some realizations with
# half or double the estimated slope.
alpha = None
for n in range(num_realizations):
# Spectral slope estimated from the upscaled field
precip_hr, alpha = rainfarm.downscale(
precip_lr, ds_factor=scale_factor, alpha=alpha, return_alpha=True
)
plt.subplot(num_realizations, 3, n * 3 + 2)
plot_precip_field(precip_hr, geodata=metadata, axis="off", colorbar=False)
if n == 0:
plt.title(f"alpha={alpha:.1f}")

# Half the estimated slope
precip_hr = rainfarm.downscale(precip_lr, ds_factor=scale_factor, alpha=alpha * 0.5)
plt.subplot(num_realizations, 3, n * 3 + 1)
plot_precip_field(precip_hr, geodata=metadata, axis="off", colorbar=False)
if n == 0:
plt.title(f"alpha={alpha * 0.5:.1f}")

# Double the estimated slope
precip_hr = rainfarm.downscale(precip_lr, ds_factor=scale_factor, alpha=alpha * 2)
plt.subplot(num_realizations, 3, n * 3 + 3)
plot_precip_field(precip_hr, geodata=metadata, axis="off", colorbar=False)
if n == 0:
plt.title(f"alpha={alpha * 2:.1f}")

plt.subplots_adjust(wspace=0, hspace=0)

plt.tight_layout()
# We can now use RainFARM to downscale the precipitation field.

# Basic downscaling
precip_hr = rainfarm.downscale(precip_lr, ds_factor=scale_factor)

# Plot the downscaled rainfall field
plt.figure()
plot_precip_field(precip_hr, geodata=metadata)
plt.title("Downscaled Rainfall Field")
plt.show()

###############################################################################
# Downscale with smoothing
# ------------------------
#
# Add smoothing with a Gaussian kernel during the downscaling process.

precip_hr_smooth = rainfarm.downscale(
precip_lr, ds_factor=scale_factor, kernel_type="gaussian"
)

# Plot the downscaled rainfall field with smoothing
plt.figure()
plot_precip_field(precip_hr_smooth, geodata=metadata)
plt.title("Downscaled Rainfall Field with Gaussian Smoothing")
plt.show()

###############################################################################
# Downscale with spectral fusion
# ------------------------------
#
# Apply spectral merging as described in D'Onofrio et al. (2014).

precip_hr_fusion = rainfarm.downscale(
precip_lr, ds_factor=scale_factor, spectral_fusion=True
)

# Plot the downscaled rainfall field with spectral fusion
plt.figure()
plot_precip_field(precip_hr_fusion, geodata=metadata)
plt.title("Downscaled Rainfall Field with Spectral Fusion")
plt.show()

###############################################################################
# Combined Downscale with smoothing and spectral fusion
# -----------------------------------------------------
#
# Apply both smoothing with a Gaussian kernel and spectral fusion during the
# downscaling process to observe the combined effect.

precip_hr_combined = rainfarm.downscale(
precip_lr, ds_factor=scale_factor, kernel_type="gaussian", spectral_fusion=True
)

# Plot the downscaled rainfall field with smoothing and spectral fusion
plt.figure()
plot_precip_field(precip_hr_combined, geodata=metadata)
plt.title("Downscaled Rainfall Field with Gaussian Smoothing and Spectral Fusion")
plt.show()

###############################################################################
Expand All @@ -126,13 +181,4 @@
# the original algorithm from Rebora et al. (2006), it cannot downscale the temporal
# dimension.


###############################################################################
# References
# ----------
#
# Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006: RainFARM:
# Rainfall downscaling by a filtered autoregressive model. J. Hydrometeor., 7,
# 724–738.

# sphinx_gallery_thumbnail_number = 2

0 comments on commit 3121cbf

Please sign in to comment.