Skip to content

Commit

Permalink
feat: reduce computations in backprop of lfilter (#3831)
Browse files Browse the repository at this point in the history
* feat: efficient backprop for a_coeffs

* update lfilter docstring

* doc: double quotation

* use dafx paper for reference as it includes more details

* revise docstring
  • Loading branch information
yoyolicoris authored Sep 14, 2024
1 parent 97ed7b3 commit ba696ea
Show file tree
Hide file tree
Showing 3 changed files with 24 additions and 18 deletions.
8 changes: 8 additions & 0 deletions docs/source/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -633,3 +633,11 @@ @article{forgione2021dynonet
year={2021},
publisher={Wiley Online Library}
}

@inproceedings{ycy2024diffapf,
title={Differentiable All-pole Filters for Time-varying Audio Systems},
author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
booktitle={International Conference on Digital Audio Effects (DAFx)},
year={2024},
pages={345--352},
}
31 changes: 14 additions & 17 deletions src/libtorchaudio/lfilter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,6 @@ class DifferentiableIIR : public torch::autograd::Function<DifferentiableIIR> {
auto a_coeffs_normalized = saved[1];
auto y = saved[2];

int64_t n_batch = x.size(0);
int64_t n_channel = x.size(1);
int64_t n_order = a_coeffs_normalized.size(1);

Expand All @@ -161,26 +160,24 @@ class DifferentiableIIR : public torch::autograd::Function<DifferentiableIIR> {

namespace F = torch::nn::functional;

if (a_coeffs_normalized.requires_grad()) {
auto dyda = F::pad(
DifferentiableIIR::apply(-y, a_coeffs_normalized),
F::PadFuncOptions({n_order - 1, 0}));

da = F::conv1d(
dyda.view({1, n_batch * n_channel, -1}),
dy.reshape({n_batch * n_channel, 1, -1}),
F::Conv1dFuncOptions().groups(n_batch * n_channel))
.view({n_batch, n_channel, -1})
.sum(0)
.flip(1);
}
auto tmp =
DifferentiableIIR::apply(dy.flip(2).contiguous(), a_coeffs_normalized)
.flip(2);

if (x.requires_grad()) {
dx =
DifferentiableIIR::apply(dy.flip(2).contiguous(), a_coeffs_normalized)
.flip(2);
dx = tmp;
}

if (a_coeffs_normalized.requires_grad()) {
da = -torch::matmul(
tmp.transpose(0, 1).reshape({n_channel, 1, -1}),
F::pad(y, F::PadFuncOptions({n_order - 1, 0}))
.unfold(2, n_order, 1)
.transpose(0, 1)
.reshape({n_channel, -1, n_order}))
.squeeze(1)
.flip(1);
}
return {dx, da};
}
};
Expand Down
3 changes: 2 additions & 1 deletion src/torchaudio/functional/filtering.py
Original file line number Diff line number Diff line change
Expand Up @@ -999,7 +999,8 @@ def _lfilter_core(

def lfilter(waveform: Tensor, a_coeffs: Tensor, b_coeffs: Tensor, clamp: bool = True, batching: bool = True) -> Tensor:
r"""Perform an IIR filter by evaluating difference equation, using differentiable implementation
developed independently by *Yu et al.* :cite:`ismir_YuF23` and *Forgione et al.* :cite:`forgione2021dynonet`.
developed separately by *Yu et al.* :cite:`ismir_YuF23` and *Forgione et al.* :cite:`forgione2021dynonet`.
The gradients of ``a_coeffs`` are computed based on a faster algorithm from :cite:`ycy2024diffapf`.
.. devices:: CPU CUDA
Expand Down

0 comments on commit ba696ea

Please sign in to comment.