Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rescalability via IBM dataset layers #1372

Draft
wants to merge 26 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 22 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 149 additions & 0 deletions examples/ibm_rescaling/rescaling_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import argparse
import os

import torch
from torch import distributed as dist

from torchdata.stateful_dataloader import StatefulDataLoader
from torchdata.stateful_dataloader.ibm_rescalable import (
DummyDataset,
PreprocessDataset,
SamplingDataset,
ScalableShardDataset,
load_distributed_state_dict,
save_distributed_state_dict,
)

# This example script validates the rescaling behavior of the ibm rescalable distributed datasets.
# On first run, saves a distributed checkpoint to the desired location.
# On subsequent runs, loads the checkpoint (possibly on a different world size / num workers)
# and verifies that previous data is not revisited, while upcoming data is.

# Example usage:
# torchrun [torchrun args] examples/ibm_rescaling/rescaling_demo.py --ckpt_path=~/ckpts/rescale_test --logical_shards=48 --num_workers=6


parser = argparse.ArgumentParser(description="Script to validate rescaling of dataloader checkpoints")
parser.add_argument("--ckpt_path", type=str, default="./rescale_test")
parser.add_argument(
"--logical_shards",
type=int,
default=96,
help="Total number of data partitions. (worldsize * n_workers) must divide this evenly.",
)
parser.add_argument("--num_workers", type=int, default=1, help="Number of dataloader workers per device")
parser.add_argument("--b_size", type=int, default=1, help="Number of data points per step per device")
parser.add_argument("--seed", type=int, default=42)

args = parser.parse_args()

# Setup
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
dist.init_process_group()
mesh = dist.device_mesh.init_device_mesh("cpu", [world_size])
placement = [dist.tensor.placement_types.Shard(0)]
subdatas = ["sub_dataset", "second_subdataset", "small_subdataset"]
[os.makedirs(os.path.join(args.ckpt_path, "data", subdata), exist_ok=True) for subdata in subdatas]

# Build dataloader
data = DummyDataset(os.path.join(args.ckpt_path, "data"), rank, world_size, delimiter_token=-1, seed=args.seed)
# Pretend that we're sampling over multiple sub-datasets
data = SamplingDataset(
os.path.join(args.ckpt_path, "data"),
data,
delimiter_token=-1,
datasets=subdatas,
weights=[12, 17, 5],
)
# Apply rescalability layer
data = ScalableShardDataset(data, n_logical_shards=args.logical_shards)
# Statelessly convert all outputs to tensors
data = PreprocessDataset(data, torch.tensor)
# Wrap in StatefulDataLoader
data = StatefulDataLoader(data, batch_size=args.b_size, num_workers=args.num_workers)

# If checkpoint does not exist, create it
ckpt_path = os.path.join(args.ckpt_path, "loader_dcp_state")
if not os.path.exists(ckpt_path) or len(os.listdir(ckpt_path)) == 0:
os.makedirs(ckpt_path, exist_ok=True)
# Iterate, assemble values to exclude
if rank == 0:
print("No existing checkpoint. Processing 100 steps.")

avoid = []
for i, inp in enumerate(data):
if i == 100:
if rank == 0:
print("Iteration complete!")
save_distributed_state_dict(data, ckpt_path, mesh)
break
avoid.append(inp)
avoid = torch.cat(avoid)
# Get all vals onto each rank
avoid = dist.tensor.DTensor.from_local(
avoid,
mesh,
placement,
).full_tensor()

# Continue, assemble values to include
load_distributed_state_dict(data, ckpt_path, mesh)
if rank == 0:
print("DCP state loaded!")

include = []
for i, inp in enumerate(data):
if i == 10:
break
include.append(inp)
include = torch.cat(include)
if rank == 0:
print("Iteration round 2 complete!")
# Get all vals onto each rank
include = dist.tensor.DTensor.from_local(include, mesh, placement).full_tensor()

if rank == 0:
torch.save(avoid, os.path.join(args.ckpt_path, "avoid.pth"))
torch.save(include, os.path.join(args.ckpt_path, "include.pth"))
print(
"Generation complete! Please rerun (with different world size / workers if desired) to complete the check."
)

# If checkpoint does exist, load and take 100 steps.
# Ensure avoid values are avoided, and all include values are included.
else:
if rank == 0:
print("Checkpoint detected!")
load_distributed_state_dict(data, ckpt_path, mesh)

vals = []
for i, inp in enumerate(data):
if i == 100:
break
vals.append(inp)
vals = torch.cat(vals)
# Get all vals onto each rank
vals = dist.tensor.DTensor.from_local(vals, mesh, placement).full_tensor()

# Perform avoid/include checks on rank 0 only
if rank == 0:
avoid = torch.load(os.path.join(args.ckpt_path, "avoid.pth"))
include = torch.load(os.path.join(args.ckpt_path, "include.pth"))

def _in(v, m):
# Returns whether vector v is a row of matrix m (both tensors)
return m.sub(v[None]).abs().sum(1).sign().prod().bool().logical_not().item()

# Avoid check
for i, x in enumerate(avoid.split(1)):
assert not _in(x[0], vals), i
print("Check passed: seen data was not revisited!")

# Include check
for i, x in enumerate(include.split(1)):
assert _in(x[0], vals), i
print("Check passed: upcoming data appears as expected!")

dist.barrier()
dist.destroy_process_group()
Loading