Skip to content

qslim/soft-mask-gnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks

MIT License

This is the code of the paper "Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks".

Prerequisites

The code is built upon PyTorch Geometric.

The following packages need to be installed:

  • python 3.7.3
  • pytorch 1.2
  • pytorch-geometric 1.3.0
  • Additional modules: numpy, easydict

Running the tests

  1. Set hyper-parameters in configs.

  2. Run tests.

    • To run 10-fold cross-validation on MUTAG, run the classification_main.py script:

      python classification_main.py --config=configs/MUTAG.json
      

      To run other classification benchmarks, replace MUTAG.json with corresponding configuration files.

    • To run the QM9 test, run the regression_main.py script:

      python regression_main.py --config=configs/QM9.json
      

Reference

@inproceedings{yang2021softmask,
	author = {Yang, Mingqi and Shen, Yanming and Qi, Heng and Yin, Baocai},
	title = {Soft-Mask: Adaptive Substructure Extractions for Graph Neural Networks},
	year = {2021},
	url = {https://doi.org/10.1145/3442381.3449929},
	booktitle = {Proceedings of the Web Conference 2021},
	pages = {2058–2068},
	numpages = {11},
	series = {WWW'21}
}

License

MIT License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages