-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
open import Realizability.ApplicativeStructure renaming (Term to ApplStrTerm; λ*-naturality to `λ*ComputationRule; λ*-chain to `λ*) hiding (λ*) | ||
open import Realizability.CombinatoryAlgebra | ||
open import Cubical.Foundations.Prelude | ||
open import Cubical.Foundations.HLevels | ||
open import Cubical.Data.Unit | ||
open import Cubical.Data.Empty | ||
open import Cubical.Data.Fin | ||
open import Cubical.Data.Vec | ||
open import Cubical.HITs.PropositionalTruncation | ||
open import Cubical.HITs.PropositionalTruncation.Monad | ||
open import Cubical.HITs.SetQuotients renaming (elimProp to setQuotElimProp; elimProp2 to setQuotElimProp2) | ||
open import Cubical.Categories.Category | ||
open import Cubical.Categories.Limits.Terminal | ||
|
||
module Realizability.Topos.TerminalObject | ||
{ℓ ℓ' ℓ''} | ||
{A : Type ℓ} | ||
(ca : CombinatoryAlgebra A) | ||
(isNonTrivial : CombinatoryAlgebra.s ca ≡ CombinatoryAlgebra.k ca → ⊥) where | ||
|
||
open CombinatoryAlgebra ca | ||
open import Realizability.Tripos.Prealgebra.Predicate.Base ca renaming (Predicate to Predicate') | ||
open import Realizability.Tripos.Prealgebra.Predicate.Properties ca | ||
open import Realizability.Topos.Object {ℓ' = ℓ'} {ℓ'' = ℓ''} ca isNonTrivial | ||
open import Realizability.Topos.FunctionalRelation {ℓ' = ℓ'} {ℓ'' = ℓ''} ca isNonTrivial | ||
|
||
open Combinators ca renaming (i to Id; ia≡a to Ida≡a) | ||
open PartialEquivalenceRelation | ||
open Predicate' renaming (isSetX to isSetPredicateBase) | ||
private | ||
Predicate = Predicate' {ℓ' = ℓ'} {ℓ'' = ℓ''} | ||
λ*ComputationRule = `λ*ComputationRule as fefermanStructure | ||
λ* = `λ* as fefermanStructure | ||
|
||
terminalPartialEquivalenceRelation : PartialEquivalenceRelation Unit* | ||
isSetX terminalPartialEquivalenceRelation = isSetUnit* | ||
isSetPredicateBase (equality terminalPartialEquivalenceRelation) = isSet× isSetUnit* isSetUnit* | ||
∣ equality terminalPartialEquivalenceRelation ∣ (tt* , tt*) r = Unit* | ||
isPropValued (equality terminalPartialEquivalenceRelation) (tt* , tt*) r = isPropUnit* | ||
isSymmetric terminalPartialEquivalenceRelation = return (k , (λ { tt* tt* _ tt* → tt* })) | ||
isTransitive terminalPartialEquivalenceRelation = return (k , (λ { tt* tt* tt* _ _ tt* tt* → tt* })) | ||
|
||
open FunctionalRelation | ||
-- I have officially taken the inlining too far | ||
-- TODO : Refactor | ||
isTerminalTerminalPartialEquivalenceRelation : ∀ {Y : Type ℓ'} → (perY : PartialEquivalenceRelation Y) → isContr (RTMorphism perY terminalPartialEquivalenceRelation) | ||
isTerminalTerminalPartialEquivalenceRelation {Y} perY = | ||
inhProp→isContr | ||
[ record | ||
{ relation = | ||
record | ||
{ isSetX = isSet× (perY .isSetX) isSetUnit* | ||
; ∣_∣ = λ { (y , tt*) r → r ⊩ ∣ perY .equality ∣ (y , y) } | ||
; isPropValued = λ { (y , tt*) r → perY .equality .isPropValued _ _ } } | ||
; isStrict = | ||
let | ||
prover : ApplStrTerm as 1 | ||
prover = ` pair ̇ # fzero ̇ # fzero | ||
in | ||
return | ||
((λ* prover) , | ||
(λ { y tt* r r⊩y~y → | ||
subst | ||
(λ r' → r' ⊩ ∣ perY .equality ∣ (y , y)) | ||
(sym | ||
(pr₁ ⨾ (λ* prover ⨾ r) | ||
≡⟨ cong (λ x → pr₁ ⨾ x) (λ*ComputationRule prover (r ∷ [])) ⟩ | ||
pr₁ ⨾ (pair ⨾ r ⨾ r) | ||
≡⟨ pr₁pxy≡x _ _ ⟩ | ||
r | ||
∎)) | ||
r⊩y~y , | ||
tt* })) | ||
; isRelational = | ||
do | ||
(trY , trY⊩isTransitiveY) ← perY .isTransitive | ||
(smY , smY⊩isSymmetricY) ← perY .isSymmetric | ||
let | ||
prover : ApplStrTerm as 1 | ||
prover = ` trY ̇ (` pair ̇ (` smY ̇ (` pr₁ ̇ # fzero)) ̇ (` pr₁ ̇ # fzero)) | ||
return | ||
(λ* prover , | ||
(λ { y y' tt* tt* a b c a⊩y~y' b⊩y~y tt* → | ||
let | ||
proofEq : λ* prover ⨾ (pair ⨾ a ⨾ (pair ⨾ b ⨾ c)) ≡ trY ⨾ (pair ⨾ (smY ⨾ a) ⨾ a) | ||
proofEq = | ||
λ* prover ⨾ (pair ⨾ a ⨾ (pair ⨾ b ⨾ c)) | ||
≡⟨ λ*ComputationRule prover ((pair ⨾ a ⨾ (pair ⨾ b ⨾ c)) ∷ []) ⟩ | ||
(trY ⨾ (pair ⨾ (smY ⨾ (pr₁ ⨾ (pair ⨾ a ⨾ (pair ⨾ b ⨾ c)))) ⨾ (pr₁ ⨾ (pair ⨾ a ⨾ (pair ⨾ b ⨾ c))))) | ||
≡⟨ cong₂ (λ x y → trY ⨾ (pair ⨾ (smY ⨾ x) ⨾ y)) (pr₁pxy≡x _ _) (pr₁pxy≡x _ _) ⟩ | ||
trY ⨾ (pair ⨾ (smY ⨾ a) ⨾ a) | ||
∎ | ||
in | ||
subst | ||
(λ r → r ⊩ ∣ perY .equality ∣ (y' , y')) | ||
(sym proofEq) | ||
(trY⊩isTransitiveY y' y y' (smY ⨾ a) a (smY⊩isSymmetricY y y' a a⊩y~y') a⊩y~y') })) | ||
; isSingleValued = return (k , (λ { _ tt* tt* _ _ _ _ → tt* })) -- nice | ||
; isTotal = return (Id , (λ y r r⊩y~y → return (tt* , subst (λ r → r ⊩ ∣ perY .equality ∣ (y , y)) (sym (Ida≡a _)) r⊩y~y))) | ||
} ] | ||
λ f g → | ||
setQuotElimProp2 | ||
(λ f g → squash/ f g) | ||
(λ F G → | ||
eq/ | ||
F G | ||
let | ||
F≤G : pointwiseEntailment perY terminalPartialEquivalenceRelation F G | ||
F≤G = | ||
(do | ||
(tlG , tlG⊩isTotalG) ← G .isTotal | ||
(stF , stF⊩isStrictF) ← F .isStrict | ||
let | ||
prover : ApplStrTerm as 1 | ||
prover = ` tlG ̇ (` pr₁ ̇ (` stF ̇ # fzero)) | ||
return | ||
(λ* prover , | ||
(λ { y tt* r r⊩Fx → | ||
transport | ||
(propTruncIdempotent (G .relation .isPropValued _ _)) | ||
(tlG⊩isTotalG y (pr₁ ⨾ (stF ⨾ r)) (stF⊩isStrictF y tt* r r⊩Fx .fst) | ||
>>= λ { (tt* , ⊩Gy) → return (subst (λ r' → r' ⊩ ∣ G .relation ∣ (y , tt*)) (sym (λ*ComputationRule prover (r ∷ []))) ⊩Gy) }) }))) | ||
in F≤G , (F≤G→G≤F perY terminalPartialEquivalenceRelation F G F≤G)) | ||
f g | ||
|
||
TerminalRT : Terminal RT | ||
TerminalRT = | ||
(Unit* , terminalPartialEquivalenceRelation) , (λ { (Y , perY) → isTerminalTerminalPartialEquivalenceRelation perY}) |