Skip to content

raoulritter/LeGrad

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LeGrad

Walid Bousselham1, Angie Boggust2, Sofian Chaybouti1, Hendrik Strobelt3,4 and Hilde Kuehne1,3

1 University of Bonn & Goethe University Frankfurt, 2 MIT CSAIL, 3 MIT-IBM Watson AI Lab, 4 IBM Research.

Hugging Face Spaces

Vision-Language foundation models have shown remarkable performance in various zero-shot settings such as image retrieval, classification, or captioning. we propose LeGrad, an explainability method specifically designed for ViTs. We LeGrad we explore how the decision-making process of such models by leveraging their feature formation process. A by-product of understanding VL models decision-making is the ability to produce localised heatmap for any text prompt.

The following is the code for a wrapper around the OpenCLIP library to equip VL models with LeGrad.

🔨 Installation

legrad library can be simply installed via pip:

$ pip install legrad_torch

Demo

To run the gradio app locally, first install gradio and then run app.py:

$ pip install gradio
$ python app.py

Usage

To see which pretrained models is available use the following code snippet:

import legrad
legrad.list_pretrained()

Single Image

To process an image and a text prompt use the following code snippet:

Note: the wrapper does not affect the original model, hence all the functionalities of OpenCLIP models can be used seamlessly.

import requests
from PIL import Image
import open_clip
import torch

from legrad import LeWrapper, LePreprocess
from legrad.utils import visualize

# ------- model's paramters -------
model_name = 'ViT-B-16'
pretrained = 'laion2b_s34b_b88k'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------- init model -------
model, _, preprocess = open_clip.create_model_and_transforms(
    model_name=model_name, pretrained=pretrained, device=device)
tokenizer = open_clip.get_tokenizer(model_name=model_name)
model.eval()
# ------- Equip the model with LeGrad -------
model = LeWrapper(model)
# ___ (Optional): Wrapper for Higher-Res input image ___
preprocess = LePreprocess(preprocess=preprocess, image_size=448)

# ------- init inputs: image + text -------
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = preprocess(Image.open(requests.get(url, stream=True).raw)).unsqueeze(0).to(device)
text = tokenizer(['a photo of a cat']).to(device)

# -------
text_embedding = model.encode_text(text, normalize=True)
print(image.shape)
explainability_map = model.compute_legrad_clip(image=image, text_embedding=text_embedding)

# ___ (Optional): Visualize overlay of the image + heatmap ___
visualize(heatmaps=explainability_map, image=image)

⭐ Acknowledgement

This code is build as wrapper around OpenCLIP library from LAION, visit their repo for more vision-language models. This project also takes inspiration from Transformer-MM-Explainability and the timm library, please visit their repository.

📚 Citation

If you find this repository useful, please consider citing our work 📝 and giving a star 🌟 :

@article{bousselham2024legrad,
  author    = {Bousselham, Walid and Boggust, Angie and Chaybouti, Sofian and Strobelt, Hendrik and Kuehne, Hilde}
  title     = {LeGrad: An Explainability Method for Vision Transformers via Feature Formation Sensitivity},
  journal   = {arXiv preprint arXiv:2404.03214},
  year      = {2024},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.8%
  • Jupyter Notebook 14.2%