Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pull request for v1.6.1 #15

Merged
merged 3 commits into from
Feb 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CITATION.cff
Original file line number Diff line number Diff line change
Expand Up @@ -28,5 +28,5 @@ keywords:
- point spread function
- image generation
license: MIT
version: "v1.6.0"
version: "v1.6.1"
date-released: '2024-02-19'
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ select = [
ignore = [
"E501",
"E203",
"UP007",
]

exclude = [
Expand Down
97 changes: 65 additions & 32 deletions src/simulatedmicroscopy/image.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,16 @@
from __future__ import annotations
import numpy as np
from typing import Optional, Union, Tuple, List

import warnings
from pathlib import Path
from typing import Optional

import h5py
import numpy as np
import scipy.signal
import skimage.measure

from .input import Coordinates
from .particle import BaseParticle
import warnings
import skimage.measure


class Image:
Expand Down Expand Up @@ -78,7 +81,7 @@ def _number_of_dimensions(self) -> int:
return len(self.image.shape)

def get_pixel_sizes(
self, dimensions: Optional[list[str]] = list("zyx"), unit: str = "m"
self, dimensions: Optional[list[str]] = None, unit: str = "m"
) -> list[float]:
"""Get pixel sizes for given dimensions in given unit

Expand All @@ -94,6 +97,9 @@ def get_pixel_sizes(
list[float]
List of pixel sizes in given unit, in order of requested dimensions.
"""
if dimensions is None:
dimensions = ["z", "y", "x"]

if self._number_of_dimensions() < 3 and "z" in dimensions:
raise ValueError("Cannot retrieve z dimension for non 3D image")

Expand All @@ -114,7 +120,9 @@ def get_pixel_sizes(

return ps

def save_h5file(self, filename: str, description: Optional[str] = None) -> bool:
def save_h5file(
self, filename: str, description: Optional[str] = None
) -> bool:
"""Save image as h5 file (custom format, not compatible with Huygens)

Parameters
Expand All @@ -138,9 +146,9 @@ def save_h5file(self, filename: str, description: Optional[str] = None) -> bool:

f.create_group("Metadata")
for dim in self.DIMENSIONS_ORDER:
f[f"Metadata/DimensionScale{dim.upper()}"] = self.get_pixel_sizes(
[dim]
)[0]
f[
f"Metadata/DimensionScale{dim.upper()}"
] = self.get_pixel_sizes([dim])[0]

if self.metadata is not None:
for k, v in self.metadata.items():
Expand Down Expand Up @@ -173,7 +181,7 @@ def load_h5file(cls, filename: str) -> type[Image]:
float(f[f"Metadata/DimensionScale{dim.upper()}"][()])
for dim in list("zyx")
]
if "PixelCoordinates" in f["Metadata"].keys():
if "PixelCoordinates" in f["Metadata"]:
pixel_coordinates = f["Metadata/PixelCoordinates"][()]
else:
pixel_coordinates = None
Expand Down Expand Up @@ -231,7 +239,11 @@ def _get_point_image_array(

@classmethod
def create_point_image(
cls, coordinates: type[Coordinates], pixel_sizes: list[float], *args, **kwargs
cls,
coordinates: type[Coordinates],
pixel_sizes: list[float],
*args,
**kwargs,
) -> type[Image]:
"""Create point source image in which every point from the set of coordinates is represented by a single white pixel

Expand All @@ -247,9 +259,11 @@ def create_point_image(
type[Image]
Genereated image
"""
(zs, ys, xs), image = cls._get_point_image_array(coordinates, pixel_sizes)
(zs, ys, xs), image = cls._get_point_image_array(
coordinates, pixel_sizes
)

im = cls(image=image, pixel_sizes=pixel_sizes, *args, **kwargs)
im = cls(image, pixel_sizes, *args, **kwargs)
im.pixel_coordinates = np.transpose([zs, ys, xs])
return im

Expand All @@ -258,7 +272,7 @@ def create_particle_image(
cls,
coordinates: type[Coordinates],
particle: type[BaseParticle],
edge_pixel_margin: Union[int, List[int]] = 0,
edge_pixel_margin: int | list[int] = 0,
*args,
**kwargs,
) -> type[Image]:
Expand All @@ -270,7 +284,7 @@ def create_particle_image(
Set of coordinates
particle : list[BaseParticle]
Particle to use for image, will also use its pixel size for the final image
edge_pixel_margin : Union[int,List[int]]
edge_pixel_margin : Union[int,list[int]]
Number of extra empty pixels to apply as a margin around the edges of the image. Either single int for all directions or one int for
every dimension (in z,y,x order).

Expand All @@ -281,7 +295,7 @@ def create_particle_image(
"""
# convert pixel sizes to micrometers for calculatation
pixel_sizes_um = np.array(particle.pixel_sizes) * 1e6
if isinstance(edge_pixel_margin, int) or isinstance(edge_pixel_margin, float):
if isinstance(edge_pixel_margin, (int, float)):
# not iterable, repeat for all dims
edge_pixel_margin = np.array(
[edge_pixel_margin] * len(pixel_sizes_um), dtype=int
Expand All @@ -304,7 +318,8 @@ def create_particle_image(

# round to integer to create point at certain pixel
xs, ys, zs = (
np.round(scaled_coords).astype(int) + edge_pixel_margin[::-1, np.newaxis]
np.round(scaled_coords).astype(int)
+ edge_pixel_margin[::-1, np.newaxis]
)
# edge_pixel_margin to x,y,z order by reversing

Expand All @@ -318,9 +333,11 @@ def create_particle_image(
image = np.zeros(shape=image_size)

for x, y, z in zip(xs, ys, zs):
image[z : z + prs[0], y : y + prs[1], x : x + prs[2]] += particle_response
image[
z : z + prs[0], y : y + prs[1], x : x + prs[2]
] += particle_response

im = cls(image=image, pixel_sizes=particle.pixel_sizes, *args, **kwargs)
im = cls(image, particle.pixel_sizes, *args, **kwargs)
im.pixel_coordinates = np.transpose([zs, ys, xs]) + particle_offset.T
return im

Expand All @@ -347,7 +364,9 @@ def downsample(self, downsample_factor: list[int]) -> type[Image]:
ds_fac = np.round(downsample_factor).astype(int)

# reduce image size by taking the mean of a AxBxC (defined by downsample_factor) sized block and use that as new pixel value
self.image = skimage.measure.block_reduce(self.image, tuple(ds_fac), np.mean)
self.image = skimage.measure.block_reduce(
self.image, tuple(ds_fac), np.mean
)

# adapt pixel sizes
self.pixel_sizes = self.pixel_sizes * ds_fac
Expand Down Expand Up @@ -375,9 +394,13 @@ def convolve(self, other: type[Image]) -> type[Image]:
The convolved image
"""
if not np.isclose(self.pixel_sizes, other.pixel_sizes).all():
raise ValueError("Cannot convolve images with different pixel sizes")
raise ValueError(
"Cannot convolve images with different pixel sizes"
)

self.image = scipy.signal.convolve(self.image, other.image, mode="same")
self.image = scipy.signal.convolve(
self.image, other.image, mode="same"
)

self.is_convolved = True
self.metadata["is_convolved"] = True
Expand Down Expand Up @@ -417,26 +440,31 @@ def add_shot_noise(self, SNR: float = 30.0) -> type[Image]:
The image with shot noise
"""
if self.has_shot_noise:
warnings.warn("This image already has shot noise, proceeding anyway")
warnings.warn(
"This image already has shot noise, proceeding anyway",
stacklevel=2,
)

# Poisson cannot deal with negative values, if these are present, shift whole image
if np.any(self.image < 0.0):
if np.any(self.image < 0.0):
self.image += np.abs(self.image.min())

scaling_factor = (
SNR**2 / self.image.mean()
) # scaling factor to get a proper Poisson sampling

self.image = (
np.random.poisson(scaling_factor * self.image.mean()) / scaling_factor
np.random.poisson(scaling_factor * self.image) / scaling_factor
)
# division by `scaling_factor` at the end to revert pixel values back to their (roughly) original range

self.has_shot_noise = True # set shot noise flag

return self

def add_read_noise(self, SNR: float = 50.0, background: float = 0.0) -> type[Image]:
def add_read_noise(
self, SNR: float = 50.0, background: float = 0.0
) -> type[Image]:
"""Add read noise to the image, realised by adding noise sampled from a normal distribution. The standard deviation
of the distribution is constant across the entire image and determined by the SNR parameter, it is therefore
signal-independent.
Expand All @@ -454,7 +482,10 @@ def add_read_noise(self, SNR: float = 50.0, background: float = 0.0) -> type[Ima
The image with read noise
"""
if self.has_read_noise:
warnings.warn("This image already has read noise, proceeding anyway")
warnings.warn(
"This image already has read noise, proceeding anyway",
stacklevel=2,
)

peak = np.percentile(
self.image, 99.9
Expand All @@ -464,7 +495,7 @@ def add_read_noise(self, SNR: float = 50.0, background: float = 0.0) -> type[Ima
sigma = peak / SNR

self.image += np.random.normal(
loc=background, scale=sigma
loc=background, scale=sigma, size=self.image.shape
) # centred around value of `background`

self.has_read_noise = True # set read noise flag
Expand All @@ -482,15 +513,15 @@ def get_pixel_coordinates(self) -> np.ndarray:
return self.pixel_coordinates

def get_particle_image(
self, particle_id: int = 0, box_size: Tuple[int] = (5, 5, 5)
self, particle_id: int = 0, box_size: tuple[int] = (5, 5, 5)
) -> np.ndarray:
"""Get 3D box around the coordinates of particle with index `particle_id`

Parameters
----------
particle_id : int, optional
Index of the particle, by default 0
box_size : Tuple[int], optional
box_size : tuple[int], optional
Size of the surrounding box in pixels, by default (5, 5, 5)

Returns
Expand All @@ -503,7 +534,9 @@ def get_particle_image(
"Not a image genereted from particle, cannot extract single particles"
)

if int(particle_id) < 0 or int(particle_id) >= len(self.pixel_coordinates):
if int(particle_id) < 0 or int(particle_id) >= len(
self.pixel_coordinates
):
raise IndexError("Invalid particle index")

coords = self.pixel_coordinates[int(particle_id)].astype(int)
Expand All @@ -518,7 +551,7 @@ def get_particle_image(


class HuygensImage(Image):
def __init__(self, filename: Union[str, Path]) -> None:
def __init__(self, filename: str | Path) -> None:
"""Wrapper for Huygens-generated .h5 images
Extends the `Image` class.

Expand Down
38 changes: 30 additions & 8 deletions tests/test_image.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from simulatedmicroscopy import Image, HuygensImage
import numpy as np
import pytest
from simulatedmicroscopy import HuygensImage, Image


def create_demo_image():
Expand Down Expand Up @@ -56,7 +56,9 @@ def test_huygens_notexisting(tmp_path):
def test_pixel_size_conversion(unit, conversionfactor):
pixel_sizes = np.array([1e-9, 1e-8, 1e-7])
image = Image(np.zeros(shape=(5, 5, 5)), pixel_sizes)
assert (image.get_pixel_sizes(unit=unit) == pixel_sizes * conversionfactor).all()
assert (
image.get_pixel_sizes(unit=unit) == pixel_sizes * conversionfactor
).all()


def test_image_equality_image():
Expand Down Expand Up @@ -113,7 +115,8 @@ def test_downsample(downsample_factor):

# check if the shape of the image has decreased by `downsample_factor`
assert (
downsampled.image.shape == np.array(im_array.shape) // downsample_factor
downsampled.image.shape
== np.array(im_array.shape) // downsample_factor
).all()

# check if the pixel_size of the image has increased by `downsample_factor`
Expand Down Expand Up @@ -159,30 +162,43 @@ def test_noise_deprecated():
im = create_demo_image()
im.noisify()


def test_shot_noise():
im = create_demo_image()

# check if returns correct image
assert im.add_shot_noise(SNR = 10.0) != create_demo_image()
assert im.add_shot_noise(SNR=10.0) != create_demo_image()

# check if original image was also changed
assert im != create_demo_image()

# should be set to True
assert im.has_shot_noise


def test_read_noise():
im = create_demo_image()

# check if returns correct image
assert im.add_read_noise(SNR = 10.0, background = 1e-3) != create_demo_image()
assert im.add_read_noise(SNR=10.0, background=1e-3) != create_demo_image()

# check if original image was also changed
assert im != create_demo_image()

# should be set to True
assert im.has_read_noise


def test_noise_apply_both():
im = create_demo_image()

assert im.add_read_noise().add_shot_noise() != create_demo_image()

assert im.has_read_noise

assert im.has_shot_noise


def test_point_image(tmp_path):
from simulatedmicroscopy import Coordinates

Expand Down Expand Up @@ -234,7 +250,9 @@ def test_pixel_coordinates_after_downscale(downsample_factor):

im.downsample([downsample_factor] * 3)

assert (pixel_coords_before == im.get_pixel_coordinates() * downsample_factor).all()
assert (
pixel_coords_before == im.get_pixel_coordinates() * downsample_factor
).all()


def test_pixel_coordinates_after_downscale_onlyz():
Expand Down Expand Up @@ -263,7 +281,9 @@ def test_pixel_coordinates_after_downscale_onlyz():

def test_image_metadata_wrongtype():
with pytest.raises(ValueError):
Image(np.zeros(shape=(5, 5, 5)), [1e-6, 1e-6, 1e-6], metadata=[1, 2, 3])
Image(
np.zeros(shape=(5, 5, 5)), [1e-6, 1e-6, 1e-6], metadata=[1, 2, 3]
)


def test_image_metadata_is_set():
Expand Down Expand Up @@ -319,7 +339,9 @@ def test_particle_image_desired_shape():
]
)

particle_im = Image.create_particle_image(cs, Sphere([1e-6, 1e-6, 1e-6], 1e-6))
particle_im = Image.create_particle_image(
cs, Sphere([1e-6, 1e-6, 1e-6], 1e-6)
)

box_shape = (2, 2, 2)

Expand Down