Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add OpenCV4 support #308

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cv_bridge/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ else()
endif()

find_package(sensor_msgs REQUIRED)
find_package(OpenCV 3 REQUIRED
find_package(OpenCV REQUIRED
COMPONENTS
opencv_core
opencv_imgproc
Expand Down
4 changes: 3 additions & 1 deletion cv_bridge/src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,9 @@ if(PYTHON_VERSION_MAJOR VERSION_EQUAL 3)
add_definitions(-DPYTHON3)
endif()

if(OpenCV_VERSION_MAJOR VERSION_EQUAL 3)
if(OpenCV_VERSION_MAJOR VERSION_EQUAL 4)
add_library(${PROJECT_NAME}_boost module.cpp module_opencv4.cpp)
elseif(OpenCV_VERSION_MAJOR VERSION_EQUAL 3)
add_library(${PROJECT_NAME}_boost module.cpp module_opencv3.cpp)
else()
add_library(${PROJECT_NAME}_boost module.cpp module_opencv2.cpp)
Expand Down
371 changes: 371 additions & 0 deletions cv_bridge/src/module_opencv4.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,371 @@
// Taken from opencv/modules/python/src2/cv2.cpp

#include "module.hpp"

#include "opencv2/core/types_c.h"

#include "opencv2/opencv_modules.hpp"

#include "pycompat.hpp"

static PyObject* opencv_error = 0;

static int failmsg(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

struct ArgInfo
{
const char * name;
bool outputarg;
// more fields may be added if necessary

ArgInfo(const char * name_, bool outputarg_)
: name(name_)
, outputarg(outputarg_) {}

// to match with older pyopencv_to function signature
operator const char *() const { return name; }
};

class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};

class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};

#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}

using namespace cv;

static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
~NumpyAllocator() {}

UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
{
UMatData* u = new UMatData(this);
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
for( int i = 0; i < dims - 1; i++ )
step[i] = (size_t)_strides[i];
step[dims-1] = CV_ELEM_SIZE(type);
u->size = sizes[0]*step[0];
u->userdata = o;
return u;
}

UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const
{
if( data != 0 )
{
CV_Error(Error::StsAssert, "The data should normally be NULL!");
// probably this is safe to do in such extreme case
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
}
PyEnsureGIL gil;

int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
_sizes[dims++] = cn;
PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum);
if(!o)
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
return allocate(o, dims0, sizes, type, step);
}

bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
return stdAllocator->allocate(u, accessFlags, usageFlags);
}

void deallocate(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
PyEnsureGIL gil;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u->refcount == 0)
{
PyObject* o = (PyObject*)u->userdata;
Py_XDECREF(o);
delete u;
}
}

const MatAllocator* stdAllocator;
};

NumpyAllocator g_numpyAllocator;


template<typename T> static
bool pyopencv_to(PyObject* obj, T& p, const char* name = "<unknown>");

template<typename T> static
PyObject* pyopencv_from(const T& src);

enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

// special case, when the convertor needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info)
{
// to avoid PyArray_Check() to crash even with valid array
do_numpy_import( );


bool allowND = true;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}

if( PyInt_Check(o) )
{
double v[] = {(double)PyInt_AsLong((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
int i, sz = (int)PyTuple_Size((PyObject*)o);
m = Mat(sz, 1, CV_64F);
for( i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GET_ITEM(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical tuple", info.name);
m.release();
return false;
}
}
return true;
}

if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}

PyArrayObject* oarr = (PyArrayObject*) o;

bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;

if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
failmsg("%s data type = %d is not supported", info.name, typenum);
return false;
}
}

#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif

int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}

int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1];
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;

for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
if( (i == ndims-1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}

if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
needcopy = true;

if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
return false;
}

if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}

_strides = PyArray_STRIDES(oarr);
}

for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}

// handle degenerate case
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}

if( ismultichannel )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}

if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", info.name);
return false;
}

m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();

if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;

return true;
}

template<>
bool pyopencv_to(PyObject* o, Mat& m, const char* name)
{
return pyopencv_to(o, m, ArgInfo(name, 0));
}

PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}

int convert_to_CvMat2(const PyObject* o, cv::Mat& m)
{
pyopencv_to(const_cast<PyObject*>(o), m, "unknown");
return 0;
}