-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added tests and changes during testing
- Loading branch information
Showing
2 changed files
with
236 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
""" Unit tests for functions in the :python:`utilities.py` module. | ||
""" | ||
|
||
import pytest | ||
import numpy as np | ||
import xarray as xr | ||
from matplotlib.pyplot import Figure, Axes | ||
import wecopttool as wot | ||
from pytest import approx | ||
import capytaine as cpy | ||
|
||
|
||
|
||
# test function in the utilities.py | ||
|
||
|
||
|
||
@pytest.fixture(scope="module") | ||
def power_flows(): | ||
"""Dictionary of power flows.""" | ||
pflows = {'Optimal Excitation': -100, | ||
'Radiated': -20, | ||
'Actual Excitation': -70, | ||
'Electrical (solver)': -40, | ||
'Mechanical (solver)': -50, | ||
'Absorbed': -50, | ||
'Unused Potential': -30, | ||
'PTO Loss': -10 | ||
} | ||
return pflows | ||
|
||
@pytest.fixture(scope="module") | ||
def f1(): | ||
"""Fundamental frequency [Hz].""" | ||
return 0.1 | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def nfreq(): | ||
"""Number of frequencies in frequency vector.""" | ||
return 5 | ||
|
||
@pytest.fixture(scope="module") | ||
def ndof(): | ||
"""Number of degrees of freedom.""" | ||
return 2 | ||
|
||
@pytest.fixture(scope="module") | ||
def ndir(): | ||
"""Number of wave directions.""" | ||
return 3 | ||
|
||
@pytest.fixture(scope='module') | ||
def bem_data(f1, nfreq, ndof, ndir): | ||
"""Synthetic BEM data.""" | ||
# TODO - start using single BEM solution across entire test suite | ||
coords = { | ||
'omega': [2*np.pi*(ifreq+1)*f1 for ifreq in range(nfreq)], | ||
'influenced_dof': [f'DOF_{idof+1}' for idof in range(ndof)], | ||
'radiating_dof': [f'DOF_{idof+1}' for idof in range(ndof)], | ||
'wave_direction': [2*np.pi/ndir*idir for idir in range(ndir)], | ||
} | ||
radiation_dims = ['omega', 'radiating_dof', 'influenced_dof'] | ||
excitation_dims = ['omega', 'influenced_dof', 'wave_direction'] | ||
hydrostatics_dims = ['radiating_dof', 'influenced_dof'] | ||
|
||
added_mass = np.ones([nfreq, ndof, ndof]) | ||
radiation_damping = np.ones([nfreq, ndof, ndof]) | ||
diffraction_force = np.ones([nfreq, ndof, ndir], dtype=complex) + 1j | ||
Froude_Krylov_force = np.ones([nfreq, ndof, ndir], dtype=complex) + 1j | ||
inertia_matrix = np.ones([ndof, ndof]) | ||
hydrostatic_stiffness = np.ones([ndof, ndof]) | ||
|
||
data_vars = { | ||
'added_mass': (radiation_dims, added_mass), | ||
'radiation_damping': (radiation_dims, radiation_damping), | ||
'diffraction_force': (excitation_dims, diffraction_force), | ||
'Froude_Krylov_force': (excitation_dims, Froude_Krylov_force), | ||
'inertia_matrix': (hydrostatics_dims, inertia_matrix), | ||
'hydrostatic_stiffness': (hydrostatics_dims, hydrostatic_stiffness) | ||
} | ||
return xr.Dataset(data_vars=data_vars, coords=coords) | ||
|
||
@pytest.fixture(scope='module') | ||
def intrinsic_impedance(bem_data): | ||
bem_data = wot.add_linear_friction(bem_data) | ||
intrinsic_impedance = wot.hydrodynamic_impedance(bem_data) | ||
return intrinsic_impedance | ||
|
||
@pytest.fixture(scope='module') | ||
def pi_controller_pto(): | ||
"""Basic PTO: proportional-integral (PI) controller, 1DOF, mechanical | ||
power.""" | ||
ndof = 1 | ||
pto = wot.pto.PTO(ndof=ndof, kinematics=np.eye(ndof), | ||
controller=wot.pto.controller_pi, | ||
names=["PI controller PTO"]) | ||
return pto | ||
|
||
@pytest.fixture(scope='module') | ||
def regular_wave(f1, nfreq): | ||
"""Single frequency wave""" | ||
wfreq = 0.3 | ||
wamp = 0.0625 | ||
wphase = 0 | ||
wdir = 0 | ||
waves = wot.waves.regular_wave(f1, nfreq, wfreq, wamp, wphase, wdir) | ||
return waves | ||
|
||
@pytest.fixture(scope="module") | ||
def fb(): | ||
"""Capytaine FloatingBody object""" | ||
try: | ||
import wecopttool.geom as geom | ||
except ImportError: | ||
pytest.skip( | ||
'Skipping integration tests due to missing optional geometry ' + | ||
'dependencies. Run `pip install wecopttool[geometry]` to run ' + | ||
'these tests.' | ||
) | ||
mesh_size_factor = 0.5 | ||
wb = geom.WaveBot() | ||
mesh = wb.mesh(mesh_size_factor) | ||
fb = cpy.FloatingBody.from_meshio(mesh, name="WaveBot") | ||
fb.add_translation_dof(name="Heave") | ||
return fb | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def wb_bem(f1, nfreq, fb): | ||
"""Boundary elemement model (Capytaine) results""" | ||
freq = wot.frequency(f1, nfreq, False) | ||
return wot.run_bem(fb, freq) | ||
|
||
@pytest.fixture(scope='class') | ||
def wb_hydro_impedance(wb_bem): | ||
"""Intrinsic hydrodynamic impedance""" | ||
hd = wot.add_linear_friction(wb_bem) | ||
hd = wot.check_linear_damping(hd) | ||
Zi = wot.hydrodynamic_impedance(hd) | ||
return Zi | ||
|
||
|
||
|
||
|
||
def test_plot_hydrodynamic_coefficients(bem_data,ndof): | ||
bem_figure_list = wot.utilities.plot_hydrodynamic_coefficients(bem_data) | ||
correct_len = ndof*(ndof+1)/2 #using only the subdiagonal elements | ||
#added mass | ||
fig_am = bem_figure_list[0][0] | ||
assert correct_len == len(fig_am.axes) | ||
assert isinstance(fig_am,Figure) | ||
#radiation damping | ||
fig_rd = bem_figure_list[1][0] | ||
assert correct_len == len(fig_rd.axes) | ||
assert isinstance(fig_rd,Figure) | ||
#radiation damping | ||
fig_ex = bem_figure_list[2][0] | ||
assert ndof == len(fig_ex.axes) | ||
assert isinstance(fig_ex,Figure) | ||
|
||
def test_plot_bode_impedance(intrinsic_impedance, ndof): | ||
fig_Zi, axes_Zi = wot.utilities.plot_bode_impedance(intrinsic_impedance) | ||
|
||
assert 2*ndof*ndof == len(fig_Zi.axes) | ||
assert isinstance(fig_Zi,Figure) | ||
assert all([isinstance(ax, Axes) for ax in np.reshape(axes_Zi,-1)]) | ||
|
||
|
||
def test_plot_power_flow(power_flows): | ||
fig_sankey, ax_sankey = wot.utilities.plot_power_flow(power_flows) | ||
|
||
assert isinstance(fig_sankey, Figure) | ||
assert isinstance(ax_sankey, Axes) | ||
|
||
def test_calculate_power_flow(wb_bem, | ||
regular_wave, | ||
pi_controller_pto, | ||
wb_hydro_impedance): | ||
"""PI controller matches optimal for any regular wave, | ||
thus we check if the radiated power is equal the absorber power | ||
and if the Optimal excitation is equal the actual excitation""" | ||
|
||
f_add = {"PTO": pi_controller_pto.force_on_wec} | ||
wec = wot.WEC.from_bem(wb_bem, f_add=f_add) | ||
|
||
res = wec.solve(waves=regular_wave, | ||
obj_fun=pi_controller_pto.average_power, | ||
nstate_opt=2, | ||
x_wec_0=1e-1*np.ones(wec.nstate_wec), | ||
x_opt_0=[-1e3, 1e4], | ||
scale_x_wec=1e2, | ||
scale_x_opt=1e-3, | ||
scale_obj=1e-2, | ||
optim_options={'maxiter': 50}, | ||
bounds_opt=((-1e4, 0), (0, 2e4),) | ||
) | ||
|
||
pflows = wot.utilities.calculate_power_flows(wec, | ||
pi_controller_pto, | ||
res[0], | ||
regular_wave.sel(realization = 0), | ||
wb_hydro_impedance) | ||
|
||
assert pflows['Absorbed'] == approx(pflows['Radiated'], rel=1e-4) | ||
assert pflows['Optimal Excitation'] == approx(pflows['Actual Excitation'], rel=1e-4) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters