Skip to content

Commit

Permalink
Merge pull request #1 from arnaudbore/release_2022
Browse files Browse the repository at this point in the history
Release 0.1.0
  • Loading branch information
arnaudbore authored Mar 21, 2022
2 parents e09aa42 + 1b840fa commit 8e65cee
Show file tree
Hide file tree
Showing 4 changed files with 686 additions and 1 deletion.
62 changes: 61 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1 +1,61 @@
# disconets_flow
# Disconets_flow

Disconets_flow allows you to analyze the impact of a cavity on structural connectivity matrices.

Yeo atlas used in the paper [link](https://box.criugm.qc.ca/f/65e07378c3374453ae9c/?dl=1).

Please cite:
```
Mrah S, Descoteaux M, Wager M, Boré A, Rheault F, Thirion B, Mandonnet E. Network-level prediction of set-shifting deterioration after lower-grade glioma resection. J Neurosurg. 2022 Mar 4:1-9. doi: 10.3171/2022.1.JNS212257. Epub ahead of print. PMID: 35245898.
```

### Build singularity or docker image
```
# Singularity
sudo singularity build scilus_latest.sif docker://scilus/scilus:latest
# Docker
sudo docker pull scilus/scilus:latest
```

## Run Disconets_flow
```
# With singularity image
nextflow run main.nf \
--input [FullPathToLesions]/ \
--atlas [FullPathToAtlas]/ \
--tractograms [FullPathToTractograms]/ \
-with-singularity scilus_latest.sif \
resume
# With docker image
nextflow run main.nf \
--input [FullPathToLesions]/ \
--atlas [FullPathToAtlas]/ \
--tractograms [FullPathToTractograms]/ \
-with-docker scilus/scilus:latest \
resume
```


### Disconets input structure
```
Root
├── S01
│   ├── *t1.nii.gz (optional)
│ └── *cavity.nii.gz
└── S02
├── *t1.nii.gz (optional)
   └── *cavity.nii.gz
```

### Tractograms input structure
```
Root
├── T01
│   ├── *t1.nii.gz (optional)
│ └── *.trk
└── T02
├── *t1.nii.gz (optional)
   └── *.trk
```
79 changes: 79 additions & 0 deletions USAGE
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
Disconets_flow pipeline
========================

Run disconets_flow pipeline

USAGE

nextflow run main.nf [OPTIONAL_ARGUMENTS] (--input) (--atlas) (--tractograms)

You need to provide an atlas and tractograms from controls to build your atlas decomposition database.
If T1s are provided (lesions and/or tractograms) it will registered the lesion/tractogram into the atlas space.
Disconets_flow will use a non-linear registration for the tractograms but you can use linear or
non-linear registration for the lesions.


Please cite:
Mrah S, Descoteaux M, Wager M, Boré A, Rheault F, Thirion B, Mandonnet E.
Network-level prediction of set-shifting deterioration after lower-grade glioma resection.
J Neurosurg. 2022 Mar 4:1-9. doi: 10.3171/2022.1.JNS212257. Epub ahead of print. PMID: 35245898.



DESCRIPTION

--input=/path/to/[root] Root folder containing multiple subjects
If t1s are provided, it will register the lesion(s) into the atlas.
[root]
├── S1
│ │── *t1.nii.gz (optional)
| └── *cavity.nii.gz
└── S2
│── *t1.nii.gz (optional)
└── *cavity.nii.gz

--atlas=/path/to/[atlas_name] Absolute path to the atlases folder
[atlas_name] (Should be the name of the atlas used)
│── atlas_labels.nii.gz (NIFTI image with all labels)
│── atlas_labels.txt (Json file each id label corresponds to the name of the label)
│── atlas_list.txt
└── atlas_t1.nii.gz (optional, only needed if we need to register lesion into atlas space)


--tractograms=/path/to/[tractograms] Absolute path to the tractograms (Need to be in the atlas space)
If t1s are provided, it will register the tractograms into the atlas.
[tractograms]
├── T01 (can use a different name)
│ │── *t1.nii.gz (optional)
| └── *.trk (One file)
└── T02 (can use a different name)
│── *t1.nii.gz (optional)
└── *.trk (One file)
OPTIONAL ARGUMENTS (current value)

--output_dir Directory where to write the final results.
By default, will be in "./results_disconets_flow".

--run_bet Run bet if your t1s are not brain extracted ($run_bet).

--quick_registration If set, will choose antsRegistrationSyNQuick.sh instead of antsRegistrationSyN.sh ($quick_registration).
--linear_registration If set, will choose linear registration of the lesion into the atlas space instead of non-linear registration ($linear_registration).

--no_pruning If set, will NOT prune on length ($no_pruning).
--no_remove_loops If set, will NOT remove streamlines making loops ($no_remove_loops).
--no_remove_outliers If set, will NOT remove outliers using QB ($no_remove_outliers).
--min_length Pruning minimal segment length ($min_length).
--max_length Pruning maximal segment length ($max_length).
--loop_max_angle Maximal winding angle over which a streamline is considered as looping ($loop_max_angle).
--outlier_threshold Outlier removal threshold when using hierarchical QB ($outlier_threshold).


--processes_bet_register_t1 Number of processes for T1 brain extraction task ($processes_bet_register_t1).
--processes_connectivity Number of processes for compute connectivity task ($processes_connectivity).
--processes The number of parallel processes to launch ($cpu_count).
Only affects the local scheduler.

AVAILABLE PROFILES (using -profile option (e.g. -profile fully_reproducible))

macos When this profile is used, Disconets_flow will modify a parameter (scratch) for MacOS users.
fully_reproducible When this profile is used, all the parameters will be set to have 100% reproducible results.
Loading

0 comments on commit 8e65cee

Please sign in to comment.