-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #371 from frheault/lesions_analysis
Lesions analysis
- Loading branch information
Showing
7 changed files
with
445 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
""" | ||
This script will output informations about lesion load in bundle(s). | ||
The input can either be streamlines, binary bundle map, or a bundle voxel | ||
label map. | ||
To be considered a valid lesion, the lesion volume must be at least | ||
min_lesion_vol mm3. This avoid the detection of thousand of single voxel | ||
lesions if an automatic lesion segmentation tool is used. | ||
""" | ||
|
||
import argparse | ||
import json | ||
import os | ||
|
||
import nibabel as nib | ||
import numpy as np | ||
import scipy.ndimage as ndi | ||
|
||
|
||
from scilpy.io.image import get_data_as_mask, get_data_as_label | ||
from scilpy.io.streamlines import load_tractogram_with_reference | ||
from scilpy.io.utils import (add_overwrite_arg, | ||
assert_inputs_exist, | ||
add_json_args, | ||
assert_outputs_exist, | ||
add_reference_arg) | ||
from scilpy.segment.streamlines import filter_grid_roi | ||
from scilpy.tractanalysis.streamlines_metrics import compute_tract_counts_map | ||
from scilpy.utils.filenames import split_name_with_nii | ||
from scilpy.utils.metrics_tools import compute_lesion_stats | ||
|
||
|
||
def _build_arg_parser(): | ||
p = argparse.ArgumentParser(description=__doc__, | ||
formatter_class=argparse.RawTextHelpFormatter) | ||
|
||
p.add_argument('in_lesion', | ||
help='Binary mask of the lesion(s) (.nii.gz).') | ||
p.add_argument('out_json', | ||
help='Output file for lesion information (.json).') | ||
p1 = p.add_mutually_exclusive_group() | ||
p1.add_argument('--bundle', | ||
help='Path of the bundle file (.trk).') | ||
p1.add_argument('--bundle_mask', | ||
help='Path of the bundle binary mask (.nii.gz).') | ||
p1.add_argument('--bundle_labels_map', | ||
help='Path of the bundle labels map (.nii.gz).') | ||
|
||
p.add_argument('--min_lesion_vol', type=float, default=7, | ||
help='Minimum lesion volume in mm3 [%(default)s].') | ||
p.add_argument('--out_lesion_atlas', metavar='FILE', | ||
help='Save the labelized lesion(s) map (.nii.gz).') | ||
p.add_argument('--out_lesion_stats', metavar='FILE', | ||
help='Save the lesion-wise volume measure (.json).') | ||
p.add_argument('--out_streamlines_stats', metavar='FILE', | ||
help='Save the lesion-wise streamline count (.json).') | ||
|
||
add_json_args(p) | ||
add_overwrite_arg(p) | ||
add_reference_arg(p) | ||
|
||
return p | ||
|
||
|
||
def main(): | ||
parser = _build_arg_parser() | ||
args = parser.parse_args() | ||
|
||
if (not args.bundle) and (not args.bundle_mask) \ | ||
and (not args.bundle_labels_map): | ||
parser.error('One of the option --bundle or --map must be used') | ||
|
||
assert_inputs_exist(parser, [args.in_lesion], | ||
optional=[args.bundle, args.bundle_mask, | ||
args.bundle_labels_map]) | ||
assert_outputs_exist(parser, args, args.out_json, | ||
optional=[args.out_lesion_stats, | ||
args.out_streamlines_stats]) | ||
|
||
lesion_img = nib.load(args.in_lesion) | ||
lesion_data = get_data_as_mask(lesion_img, dtype=np.bool) | ||
|
||
if args.bundle: | ||
bundle_name, _ = split_name_with_nii(os.path.basename(args.bundle)) | ||
sft = load_tractogram_with_reference(parser, args, args.bundle) | ||
sft.to_vox() | ||
sft.to_corner() | ||
streamlines = sft.get_streamlines_copy() | ||
map_data = compute_tract_counts_map(streamlines, | ||
lesion_data.shape) | ||
map_data[map_data > 0] = 1 | ||
elif args.bundle_mask: | ||
bundle_name, _ = split_name_with_nii( | ||
os.path.basename(args.bundle_mask)) | ||
map_img = nib.load(args.bundle_mask) | ||
map_data = get_data_as_mask(map_img) | ||
else: | ||
bundle_name, _ = split_name_with_nii(os.path.basename( | ||
args.bundle_labels_map)) | ||
map_img = nib.load(args.bundle_labels_map) | ||
map_data = get_data_as_label(map_img) | ||
|
||
is_single_label = args.bundle_labels_map is None | ||
voxel_sizes = lesion_img.header.get_zooms()[0:3] | ||
lesion_atlas, _ = ndi.label(lesion_data) | ||
|
||
lesion_load_dict = compute_lesion_stats( | ||
map_data, lesion_atlas, single_label=is_single_label, | ||
voxel_sizes=voxel_sizes, min_lesion_vol=args.min_lesion_vol) | ||
|
||
if args.out_lesion_atlas: | ||
# lesion_atlas *= map_data.astype(np.bool) | ||
nib.save(nib.Nifti1Image(lesion_atlas, lesion_img.affine), | ||
args.out_lesion_atlas) | ||
|
||
volume_dict = {bundle_name: lesion_load_dict} | ||
with open(args.out_json, 'w') as outfile: | ||
json.dump(volume_dict, outfile, | ||
sort_keys=args.sort_keys, indent=args.indent) | ||
|
||
if args.out_streamlines_stats or args.out_lesion_stats: | ||
lesion_dict = {} | ||
for lesion in np.unique(lesion_atlas)[1:]: | ||
curr_vol = np.count_nonzero(lesion_atlas[lesion_atlas == lesion]) \ | ||
* np.prod(voxel_sizes) | ||
if curr_vol >= args.min_lesion_vol: | ||
key = str(lesion).zfill(4) | ||
lesion_dict[key] = {'volume': curr_vol} | ||
if args.bundle: | ||
tmp = np.zeros(lesion_atlas.shape) | ||
tmp[lesion_atlas == lesion] = 1 | ||
new_sft, _ = filter_grid_roi(sft, tmp, 'any', False) | ||
lesion_dict[key]['strs_count'] = len(new_sft) | ||
|
||
lesion_vol_dict = {bundle_name: {}} | ||
streamlines_count_dict = {bundle_name: {'streamlines_count': {}}} | ||
for key in lesion_dict.keys(): | ||
lesion_vol_dict[bundle_name][key] = lesion_dict[key]['volume'] | ||
if args.bundle: | ||
streamlines_count_dict[bundle_name]['streamlines_count'][key] = \ | ||
lesion_dict[key]['strs_count'] | ||
|
||
if args.out_lesion_stats: | ||
with open(args.out_lesion_stats, 'w') as outfile: | ||
json.dump(lesion_vol_dict, outfile, | ||
sort_keys=args.sort_keys, indent=args.indent) | ||
if args.out_streamlines_stats: | ||
with open(args.out_streamlines_stats, 'w') as outfile: | ||
json.dump(streamlines_count_dict, outfile, | ||
sort_keys=args.sort_keys, indent=args.indent) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.