DDL parase and Convert to BigQuery JSON schema and DDL statements module, available in Python.
- DDL parse and get table schema information.
- Currently, only the
CREATE TABLE
statement is supported. - Convert to BigQuery JSON schema and BigQuery DDL statements.
- Supported databases are MySQL/MariaDB, PostgreSQL, Oracle, Redshift.
- Python >= 3.5
- pyparsing
pip install:
$ pip install ddlparse
command install:
$ python setup.py install
pip update:
$ pip install ddlparse --upgrade
import json
from ddlparse import DdlParse
sample_ddl = """
CREATE TABLE My_Schema.Sample_Table (
Id integer PRIMARY KEY COMMENT 'User ID',
Name varchar(100) NOT NULL COMMENT 'User name',
Total bigint NOT NULL,
Avg decimal(5,1) NOT NULL,
Point int(10) unsigned,
Zerofill_Id integer unsigned zerofill NOT NULL,
Created_At date, -- Oracle 'DATE' -> BigQuery 'DATETIME'
UNIQUE (NAME)
);
"""
# parse pattern (1-1)
table = DdlParse().parse(sample_ddl)
# parse pattern (1-2) : Specify source database
table = DdlParse().parse(ddl=sample_ddl, source_database=DdlParse.DATABASE.oracle)
# parse pattern (2-1)
parser = DdlParse(sample_ddl)
table = parser.parse()
print("* BigQuery Fields * : normal")
print(table.to_bigquery_fields())
# parse pattern (2-2) : Specify source database
parser = DdlParse(ddl=sample_ddl, source_database=DdlParse.DATABASE.oracle)
table = parser.parse()
# parse pattern (3-1)
parser = DdlParse()
parser.ddl = sample_ddl
table = parser.parse()
# parse pattern (3-2) : Specify source database
parser = DdlParse()
parser.source_database = DdlParse.DATABASE.oracle
parser.ddl = sample_ddl
table = parser.parse()
print("* BigQuery Fields * : Oracle")
print(table.to_bigquery_fields())
print("* TABLE *")
print("schema = {} : name = {} : is_temp = {}".format(table.schema, table.name, table.is_temp))
print("* BigQuery Fields *")
print(table.to_bigquery_fields())
print("* BigQuery Fields - column name to lower case / upper case *")
print(table.to_bigquery_fields(DdlParse.NAME_CASE.lower))
print(table.to_bigquery_fields(DdlParse.NAME_CASE.upper))
print("* COLUMN *")
for col in table.columns.values():
col_info = {}
col_info["name"] = col.name
col_info["data_type"] = col.data_type
col_info["length"] = col.length
col_info["precision(=length)"] = col.precision
col_info["scale"] = col.scale
col_info["is_unsigned"] = col.is_unsigned
col_info["is_zerofill"] = col.is_zerofill
col_info["constraint"] = col.constraint
col_info["not_null"] = col.not_null
col_info["PK"] = col.primary_key
col_info["unique"] = col.unique
col_info["auto_increment"] = col.auto_increment
col_info["distkey"] = col.distkey
col_info["sortkey"] = col.sortkey
col_info["encode"] = col.encode
col_info["default"] = col.default
col_info["character_set"] = col.character_set
col_info["bq_legacy_data_type"] = col.bigquery_legacy_data_type
col_info["bq_standard_data_type"] = col.bigquery_standard_data_type
col_info["comment"] = col.comment
col_info["description(=comment)"] = col.description
col_info["bigquery_field"] = json.loads(col.to_bigquery_field())
print(json.dumps(col_info, indent=2, ensure_ascii=False))
print("* DDL (CREATE TABLE) statements *")
print(table.to_bigquery_ddl())
print("* DDL (CREATE TABLE) statements - dataset name, table name and column name to lower case / upper case *")
print(table.to_bigquery_ddl(DdlParse.NAME_CASE.lower))
print(table.to_bigquery_ddl(DdlParse.NAME_CASE.upper))
print("* Get Column object (case insensitive) *")
print(table.columns["total"])
print(table.columns["total"].data_type)
Shinichi Takii [email protected]
- Repository : https://github.com/shinichi-takii/ddlparse
- PyPI Package : https://pypi.org/project/ddlparse/
- pyparsing : https://github.com/pyparsing/pyparsing