-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
483fbf9
commit 2b1aa92
Showing
33 changed files
with
9,960 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Create the config | ||
from pathlib import Path | ||
|
||
data_path = Path('output/posses') | ||
experiment_dir = Path('models/posses') | ||
|
||
config = """ | ||
name: "posses" | ||
joeynmt_version: 2.0.0 | ||
data: | ||
task: "S2T" # "S2T" for speech-to-text, "MT" for (text) translation | ||
train: "{data_dir}/train" | ||
dev: "{data_dir}/dev" | ||
test: "{data_dir}/test" | ||
dataset_type: "speech" # SpeechDataset takes tsv as input | ||
src: | ||
lang: "en_ng" | ||
num_freq: 534 # number of frequencies of audio inputs | ||
max_length: 3000 # much longer than text sequence! | ||
min_length: 10 # have to be specified so that 1d-conv works! | ||
level: "frame" # Here we specify we're working on BPEs. | ||
tokenizer_type: "speech" | ||
tokenizer_cfg: | ||
specaugment: | ||
freq_mask_n: 1 | ||
freq_mask_f: 5 | ||
time_mask_n: 1 | ||
time_mask_t: 10 | ||
time_mask_p: 1.0 | ||
cmvn: | ||
norm_means: True | ||
norm_vars: True | ||
before: True | ||
trg: | ||
lang: "en_ng" | ||
max_length: 100 | ||
lowercase: False | ||
level: "bpe" # Here we specify we're working on BPEs. | ||
voc_file: "{data_dir}/spm_bpe40.vocab" | ||
tokenizer_type: "sentencepiece" | ||
tokenizer_cfg: | ||
model_file: "{data_dir}/spm_bpe40.model" | ||
pretokenize: "none" | ||
testing: | ||
n_best: 1 | ||
beam_size: 5 | ||
beam_alpha: 1.0 | ||
batch_size: 4 | ||
batch_type: "sentence" | ||
max_output_length: 100 # Don't generate translations longer than this. | ||
eval_metrics: ["wer"] # Use "wer" for ASR task, "bleu" for ST task | ||
sacrebleu_cfg: # sacrebleu options | ||
tokenize: "intl" # `tokenize` option in sacrebleu.corpus_bleu() function (options include: "none" (use for already tokenized test data), "13a" (default minimal tokenizer), "intl" which mostly does punctuation and unicode, etc) | ||
training: | ||
#load_model: "{experiment_dir}/1.ckpt" # if uncommented, load a pre-trained model from this checkpoint | ||
random_seed: 42 | ||
optimizer: "adam" | ||
normalization: "tokens" | ||
adam_betas: [0.9, 0.98] | ||
scheduling: "plateau" | ||
patience: 5 | ||
learning_rate: 0.0002 | ||
learning_rate_min: 0.00000001 | ||
weight_decay: 0.0 | ||
label_smoothing: 0.1 | ||
loss: "crossentropy-ctc" # use CrossEntropyLoss + CTCLoss | ||
ctc_weight: 0.3 # ctc weight in interpolation | ||
batch_size: 4 # much bigger than text! your "tokens" are "frames" now. | ||
batch_type: "sentence" | ||
batch_multiplier: 1 | ||
early_stopping_metric: "wer" | ||
epochs: 10 # Decrease for when playing around and checking of working. | ||
validation_freq: 1000 # Set to at least once per epoch. | ||
logging_freq: 100 | ||
model_dir: "{experiment_dir}" | ||
overwrite: True | ||
shuffle: True | ||
use_cuda: True | ||
print_valid_sents: [0, 1, 2, 3] | ||
keep_best_ckpts: 2 | ||
model: | ||
initializer: "xavier_uniform" | ||
bias_initializer: "zeros" | ||
init_gain: 1.0 | ||
embed_initializer: "xavier_uniform" | ||
embed_init_gain: 1.0 | ||
tied_embeddings: False # DIsable embeddings sharing between enc(audio) and dec(text) | ||
tied_softmax: False | ||
encoder: | ||
type: "transformer" | ||
num_layers: 12 # Common to use doubly bigger encoder than decoder in S2T. | ||
num_heads: 4 | ||
embeddings: | ||
embedding_dim: 534 # Must be same as the frequency of the filterbank features! | ||
# typically ff_size = 4 x hidden_size | ||
hidden_size: 256 | ||
ff_size: 1024 | ||
dropout: 0.1 | ||
layer_norm: "pre" | ||
# new for S2T: | ||
subsample: True # enable 1d conv module | ||
conv_kernel_sizes: [5, 5] # convolution kernel sizes (window width) | ||
conv_channels: 512 # convolution channels | ||
in_channels: 534 # Must be same as the embedding_dim | ||
decoder: | ||
type: "transformer" | ||
num_layers: 6 | ||
num_heads: 4 | ||
embeddings: | ||
embedding_dim: 256 | ||
scale: True | ||
dropout: 0.0 | ||
# typically ff_size = 4 x hidden_size | ||
hidden_size: 256 | ||
ff_size: 1024 | ||
dropout: 0.1 | ||
layer_norm: "pre" | ||
""".format(data_dir=data_path.as_posix(), | ||
experiment_dir=experiment_dir.as_posix()) | ||
|
||
(data_path / 'config.yaml').write_text(config) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import argparse | ||
from pathlib import Path | ||
|
||
from pose_format import Pose | ||
from pose_format.utils.generic import pose_normalization_info, correct_wrists, reduce_holistic | ||
|
||
|
||
def preprocess(srcDir, trgDir): | ||
srcDir = Path(srcDir) | ||
trgDir = Path(trgDir) | ||
trgDir.mkdir(parents=True, exist_ok=True) | ||
for path in srcDir.iterdir(): | ||
if path.is_file() and path.suffix == ".pose": | ||
with open(srcDir / path.name, 'rb') as pose_file: | ||
pose = Pose.read(pose_file.read()) | ||
pose = reduce_holistic(pose) | ||
correct_wrists(pose) | ||
pose = pose.normalize(pose_normalization_info(pose.header)) | ||
with open(trgDir / path.name, 'w+b') as pose_file: | ||
pose.write(pose_file) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--srcDir", required=True, type=str) | ||
parser.add_argument("--trgDir", required=True, type=str) | ||
args = parser.parse_args() | ||
preprocess(args.srcDir, args.trgDir) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import numpy as np | ||
from pose_format import Pose | ||
import pandas as pd | ||
from swu_representation import swu2data | ||
|
||
FrameRate = 29.97003 | ||
|
||
|
||
def ms2frame(ms) -> int: | ||
return int(ms / 1000 * FrameRate) | ||
|
||
|
||
def pose_to_matrix(file_path, start_ms, end_ms): | ||
with open(file_path, "rb") as f: | ||
pose = Pose.read(f.read()) | ||
pose = pose.body.data | ||
pose = pose.reshape(pose.shape[0], pose.shape[2] * pose.shape[3]) | ||
pose = pose[ms2frame(start_ms):ms2frame(end_ms)] | ||
return pose | ||
|
||
|
||
def load_dataset(folder_name): | ||
|
||
target = pd.read_csv(f'{folder_name}/target.csv') | ||
dataset = [] | ||
for line in target.values: | ||
pose = pose_to_matrix(f'{folder_name}/{line[0]}', line[2], line[3]) | ||
pose = pose.filled(fill_value=0) | ||
utt_id = line[0].split('.')[0] | ||
utt_id = f'{utt_id}({line[2]})' | ||
dataset.append((utt_id, pose, swu2data(line[4]))) | ||
return dataset | ||
|
||
|
||
def extract_to_fbank(pose_data, output_path, overwrite: bool = False): | ||
if output_path is not None and output_path.is_file() and not overwrite: | ||
return np.load(output_path.as_posix()) | ||
if output_path is not None: | ||
np.save(output_path.as_posix(), pose_data) | ||
assert output_path.is_file(), output_path | ||
return pose_data | ||
|
||
|
||
if __name__ == "__main__": | ||
dataSet = load_dataset("Dataset") | ||
|
||
print(dataSet) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import argparse | ||
|
||
from joeynmt.prediction import test, translate | ||
from joeynmt.training import train | ||
|
||
|
||
def main(): | ||
ap = argparse.ArgumentParser("Joey NMT") | ||
|
||
ap.add_argument( | ||
"mode", | ||
choices=["train", "test", "translate"], | ||
help="train a model or test or translate", | ||
) | ||
|
||
ap.add_argument("config_path", type=str, help="path to YAML config file") | ||
|
||
ap.add_argument("-c", "--ckpt", type=str, help="checkpoint for prediction") | ||
|
||
ap.add_argument("-o", | ||
"--output_path", | ||
type=str, | ||
help="path for saving translation output") | ||
|
||
ap.add_argument( | ||
"-a", | ||
"--save_attention", | ||
action="store_true", | ||
help="save attention visualizations", | ||
) | ||
|
||
ap.add_argument("-s", "--save_scores", action="store_true", help="save scores") | ||
|
||
ap.add_argument( | ||
"-t", | ||
"--skip_test", | ||
action="store_true", | ||
help="Skip test after training", | ||
) | ||
|
||
args = ap.parse_args() | ||
|
||
if args.mode == "train": | ||
train(cfg_file=args.config_path, skip_test=args.skip_test) | ||
elif args.mode == "test": | ||
test( | ||
cfg_file=args.config_path, | ||
ckpt=args.ckpt, | ||
output_path=args.output_path, | ||
save_attention=args.save_attention, | ||
save_scores=args.save_scores, | ||
) | ||
elif args.mode == "translate": | ||
translate( | ||
cfg_file=args.config_path, | ||
ckpt=args.ckpt, | ||
output_path=args.output_path, | ||
) | ||
else: | ||
raise ValueError("Unknown mode") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.