Skip to content

Commit

Permalink
pi classifier
Browse files Browse the repository at this point in the history
  • Loading branch information
Jlh18 committed Jul 26, 2024
1 parent acfb88c commit 0f722e0
Show file tree
Hide file tree
Showing 2 changed files with 105 additions and 30 deletions.
135 changes: 105 additions & 30 deletions Notes/natural_model_univ/groupoid_model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -346,25 +346,14 @@ \subsection{Groupoid fibrations}
in $\Si_{A}B \, x$
\[ \Si_{A}B \, f \, (\al,\be) := (A \, f \, \al, B \, (f,\id_{{A \, f \, a_{1}}}) \, \be) \]


% Let us also define the natural transformation
% $\fst : \Si_{A}B \to A$ by
% % https://q.uiver.app/#q=WzAsNyxbMCwwLCJcXGRpc3B7QX1cXGNpcmMgXFxkaXNwe0J9Il0sWzAsMiwiXFxkaXNwe0F9Il0sWzEsMV0sWzIsMV0sWzMsMCwiXFxTaV9BIEIiXSxbMywyLCJcXGZpYmVyIChcXGRpc3B7QX0pIl0sWzUsMSwiQSJdLFswLDEsIlxcZGlzcHtCfSIsMV0sWzIsMywiXFxmaWJlciIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XSxbNCw1LCJcXGZpYmVyKFxcZGlzcCBCKSIsMV0sWzQsNiwiXFxmc3QiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNSw2LCJcXGNvbmciLDFdXQ==
% \[\begin{tikzcd}
% {\disp{A}\circ \disp{B}} &&& {\Si_A B} \\
% & {} & {} &&& A \\
% {\disp{A}} &&& {\fiber (\disp{A})}
% \arrow["{\disp{B}}"{description}, from=1-1, to=3-1]
% \arrow["\fst"{description}, dashed, from=1-4, to=2-6]
% \arrow["{\fiber(\disp B)}"{description}, from=1-4, to=3-4]
% \arrow["\fiber", maps to, from=2-2, to=2-3]
% \arrow["\cong"{description}, from=3-4, to=2-6]
% \end{tikzcd}\]
Let us also define the natural transformation
$\fst : \Si_{A}B \to A$ by
\[ \fst_{x} : (a, b) \mapsto a \]
\end{defn}

\medskip

\begin{cor}[Fibrations are closed under composition]
\begin{prop}[Fibrations are closed under composition]
The corresponding fact about fibrations is that
the composition of two fibrations is a fibration.
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXFhpIl0sWzAsMSwiXFxEZSJdLFsxLDEsIlxcR2EiXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMSwyLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMCwyLCIiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifSwiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV1d
Expand All @@ -375,9 +364,7 @@ \subsection{Groupoid fibrations}
\arrow[dashed, two heads, from=1-1, to=2-2]
\arrow[two heads, from=2-1, to=2-2]
\end{tikzcd}\]
\end{cor}

\medskip
\end{prop}

We can compare the two fibrations
\[ \disp{B} \circ \disp{A}
Expand All @@ -391,25 +378,65 @@ \subsection{Groupoid fibrations}
whereas an object in $\Ga \cdot {\Si_{A}(B)}$ would instead be $(x,(a,b))$.

\medskip
\begin{prop}[Strict Beck-Chevalley for $\Si$]
Let $\si : \De \to \Ga$, $A : \Ga \to \grpd$ and $B : \Ga\cdot A \to \grpd$.
Then
\[ (\Si_{A}B) \circ \si = \Si_{A \circ \si}(B \circ \si_{A})\]
where $\si_{A}$ is uniquely determined by the pullback in
% https://q.uiver.app/#q=WzAsOSxbMiwxLCJcXEdhLkEiXSxbMiwyLCJcXEdhIl0sWzEsMSwiXFxEZSBcXGNkb3QgQSBcXHNpIl0sWzMsMiwiXFxncnBkIl0sWzMsMSwiXFxncnBkIl0sWzIsMCwiXFxHYS5BLkIiXSxbMSwyLCJcXERlIl0sWzEsMCwiXFxEZSBcXGNkb3QgQSBcXHNpIFxcY2RvdCBCIFxcY2lyYyBcXHNpX0EiXSxbMCwyLCJcXGdycGQiXSxbMCwxLCJcXGRpc3B7QX0iLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMSwzLCJBIiwyXSxbMCw0LCJCIl0sWzAsMywiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzIsMCwiXFxzaV9BIiwyXSxbNSwwLCJcXGRpc3B7Qn0iLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNiwxLCJcXHNpIiwyXSxbMiw2LCJcXGRpc3B7QVxcc2l9IiwxXSxbMiwxLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNywyLCJcXGRpc3B7QiBcXGNpcmMgXFxzaV9BfSIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs3LDUsIlxcc2lfe0EgXFxjZG90IEJ9IiwyXSxbNiw4LCJcXFNpX0EgQiBcXGNpcmMgXFxzaSIsMix7Im9mZnNldCI6MX1dLFs2LDgsIlxcU2lfe0EgXFxjaXJjIFxcc2l9IChCIFxcY2lyYyBcXHNpX0EpIiwwLHsib2Zmc2V0IjotMX1dXQ==
\[\begin{tikzcd}
& {\De \cdot A \si \cdot B \circ \si_A} & {\Ga.A.B} \\
& {\De \cdot A \si} & {\Ga.A} & \grpd \\
\grpd & \De & \Ga & \grpd
\arrow["{\si_{A \cdot B}}"', from=1-2, to=1-3]
\arrow["{\disp{B \circ \si_A}}"{description}, two heads, from=1-2, to=2-2]
\arrow["{\disp{B}}"{description}, two heads, from=1-3, to=2-3]
\arrow["{\si_A}"', from=2-2, to=2-3]
\arrow["{\disp{A\si}}"{description}, from=2-2, to=3-2]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-2, to=3-3]
\arrow["B", from=2-3, to=2-4]
\arrow["{\disp{A}}"{description}, two heads, from=2-3, to=3-3]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-3, to=3-4]
\arrow["{(\Si_A B) \circ \si}"', shift right, from=3-2, to=3-1]
\arrow["{\Si_{A \circ \si} (B \circ \si_A)}", shift left, from=3-2, to=3-1]
\arrow["\si"', from=3-2, to=3-3]
\arrow["A"', from=3-3, to=3-4]
\end{tikzcd}\]
\end{prop}
\begin{proof}
By checking pointwise at $x \in \De$, this boils down to showing
\[(\si x)_{A} = \si_{A} \circ x_{A \circ \si} : A (\si x) \to \Ga \cdot A\]
% https://q.uiver.app/#q=WzAsOCxbMiwwLCJcXEdhLkEiXSxbMiwxLCJcXEdhIl0sWzEsMCwiXFxEZSBcXGNkb3QgQSBcXHNpIl0sWzMsMSwiXFxncnBkIl0sWzMsMCwiXFxncnBkIl0sWzEsMSwiXFxEZSJdLFswLDEsIlxcdGVybWluYWwiXSxbMCwwLCJBIChcXHNpIHgpIl0sWzAsMSwiXFxkaXNwe0F9IiwxLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzEsMywiQSIsMl0sWzAsNCwiQiJdLFswLDMsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFsyLDAsIlxcc2lfQSIsMl0sWzUsMSwiXFxzaSIsMl0sWzIsNSwiXFxkaXNwe0FcXHNpfSIsMV0sWzIsMSwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzYsNSwieCIsMl0sWzcsMiwieF97QSBcXHNpfSIsMl0sWzcsNiwiISIsMV0sWzcsMCwiKFxcc2kgeClfQSIsMCx7ImN1cnZlIjotM31dLFs3LDUsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==
\[\begin{tikzcd}
{A (\si x)} & {\De \cdot A \si} & {\Ga.A} & \grpd \\
\terminal & \De & \Ga & \grpd
\arrow["{x_{A \si}}"', from=1-1, to=1-2]
\arrow["{(\si x)_A}", bend left, from=1-1, to=1-3]
\arrow["{!}"{description}, from=1-1, to=2-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
\arrow["{\si_A}"', from=1-2, to=1-3]
\arrow["{\disp{A\si}}"{description}, from=1-2, to=2-2]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-2, to=2-3]
\arrow["B", from=1-3, to=1-4]
\arrow["{\disp{A}}"{description}, two heads, from=1-3, to=2-3]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-3, to=2-4]
\arrow["x"', from=2-1, to=2-2]
\arrow["\si"', from=2-2, to=2-3]
\arrow["A"', from=2-3, to=2-4]
\end{tikzcd}\]

\begin{defn}[Pushforward of fibrations]
which holds because of the universal property of pullback.
\end{proof}

\medskip

\begin{defn}[$\Pi$-former operation]
Given $A : \Ga \to \grpd$ and $B : \Ga \cdot A \to \grpd$
we will define $\Pi_{A} B : \Ga \to \grpd$ such that
for any $C : \Ga \to \grpd$ we have an isomorphism
\[ [\Ga \cdot A, \grpd](\disp{A}\circ C, B) \iso
[\Ga, \grpd](C, \Pi_{A} B)\]
natural in both $B$ and $C$.
Stated in terms of fibrations we have
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXEdhIFxcY2RvdCBBIFxcY2RvdCBCIl0sWzAsMSwiXFxHYSBcXGNkb3QgQSJdLFsxLDEsIlxcR2EiXSxbMSwwLCJcXEdhIFxcY2RvdCBcXFBpX0EgQiJdLFswLDEsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFsxLDIsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFszLDIsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dXQ==
\[\begin{tikzcd}
{\Ga \cdot A \cdot B} & {\Ga \cdot \Pi_A B} \\
{\Ga \cdot A} & \Ga
\arrow["\disp{B}"', two heads, from=1-1, to=2-1]
\arrow[two heads, dashed, from=1-2, to=2-2]
\arrow["\disp{A}"', two heads, from=2-1, to=2-2]
\end{tikzcd}\]
with the universal property of pushforward
\[ \Fib_{\Ga \cdot A}(\disp{A}^{*}\disp{C}, \disp{B}) \iso \Fib_{\Ga}(\disp{C}, \disp{\Pi_{A} B})\]
\end{defn}
\begin{proof}
$\Pi_{A}B$ acts on objects by taking fiberwise sections
Expand Down Expand Up @@ -437,6 +464,54 @@ \subsection{Groupoid fibrations}

\medskip

\begin{cor}[Fibrations are closed under pushforward]
Stated in terms of fibrations, we have
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFhpIl0sWzAsMSwiXFxEZSJdLFsxLDEsIlxcR2EiXSxbMSwwLCJcXEdhXyEgXFxzaV8qIFxcdGF1Il0sWzAsMSwiXFx0YXUiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMSwyLCJcXHNpIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzMsMiwiXFxzaV8qIFxcdGF1IiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV1d
\[\begin{tikzcd}
\Xi & {\Ga_! \si_* \tau} \\
\De & \Ga
\arrow["\tau"', two heads, from=1-1, to=2-1]
\arrow["{\si_* \tau}", two heads, from=1-2, to=2-2]
\arrow["\si"', two heads, from=2-1, to=2-2]
\end{tikzcd}\]
with the universal property of pushforward
\[ \Fib_{\De}(\si^{*}\rho, \tau) \iso \Fib_{\Ga}(\rho, \si_{*} \tau)\]
natural in both $\tau$ and $\rho$.
\end{cor}

\medskip

\begin{prop}[Strict Beck-Chevalley for $\Pi$]
Let $\si : \De \to \Ga$, $A : \Ga \to \grpd$ and $B : \Ga\cdot A \to \grpd$.
Then
\[ (\Pi_{A}B) \circ \si = \Pi_{A \circ \si}(B \circ \si_{A})\]
where $\si_{A}$ is uniquely determined by the pullback in
% https://q.uiver.app/#q=WzAsOSxbMiwxLCJcXEdhLkEiXSxbMiwyLCJcXEdhIl0sWzEsMSwiXFxEZSBcXGNkb3QgQSBcXHNpIl0sWzMsMiwiXFxncnBkIl0sWzMsMSwiXFxncnBkIl0sWzIsMCwiXFxHYS5BLkIiXSxbMSwyLCJcXERlIl0sWzEsMCwiXFxEZSBcXGNkb3QgQSBcXHNpIFxcY2RvdCBCIFxcY2lyYyBcXHNpX0EiXSxbMCwyLCJcXGdycGQiXSxbMCwxLCJcXGRpc3B7QX0iLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMSwzLCJBIiwyXSxbMCw0LCJCIl0sWzAsMywiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzIsMCwiXFxzaV9BIiwyXSxbNSwwLCJcXGRpc3B7Qn0iLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbNiwxLCJcXHNpIiwyXSxbMiw2LCJcXGRpc3B7QVxcc2l9IiwxXSxbMiwxLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNywyLCJcXGRpc3B7QiBcXGNpcmMgXFxzaV9BfSIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs3LDUsIlxcc2lfe0EgXFxjZG90IEJ9IiwyXSxbNiw4LCJcXFBpX0EgQiBcXGNpcmMgXFxzaSIsMix7Im9mZnNldCI6MX1dLFs2LDgsIlxcUGlfe0EgXFxjaXJjIFxcc2l9IChCIFxcY2lyYyBcXHNpX0EpIiwwLHsib2Zmc2V0IjotMX1dXQ==
\[\begin{tikzcd}
& {\De \cdot A \si \cdot B \circ \si_A} & {\Ga.A.B} \\
& {\De \cdot A \si} & {\Ga.A} & \grpd \\
\grpd & \De & \Ga & \grpd
\arrow["{\si_{A \cdot B}}"', from=1-2, to=1-3]
\arrow["{\disp{B \circ \si_A}}"{description}, two heads, from=1-2, to=2-2]
\arrow["{\disp{B}}"{description}, two heads, from=1-3, to=2-3]
\arrow["{\si_A}"', from=2-2, to=2-3]
\arrow["{\disp{A\si}}"{description}, from=2-2, to=3-2]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-2, to=3-3]
\arrow["B", from=2-3, to=2-4]
\arrow["{\disp{A}}"{description}, two heads, from=2-3, to=3-3]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-3, to=3-4]
\arrow["{\Pi_A B \circ \si}"', shift right, from=3-2, to=3-1]
\arrow["{\Pi_{A \circ \si} (B \circ \si_A)}", shift left, from=3-2, to=3-1]
\arrow["\si"', from=3-2, to=3-3]
\arrow["A"', from=3-3, to=3-4]
\end{tikzcd}\]
\end{prop}
\begin{proof}
By checking pointwise, this boils down to Beck-Chevalley for $\Si$.
\end{proof}

\medskip

\begin{prop}[All objects are fibrant]
Let $\terminal$ denote the terminal groupoid,
namely that with a single object and morphism.
Expand Down
Binary file modified Notes/natural_model_univ/main.pdf
Binary file not shown.

0 comments on commit 0f722e0

Please sign in to comment.