Skip to content

spikedoanz/matmul

Repository files navigation

matmul

This repo contains a number of matrix multiplication implementations, in order of increasing complexity.

Within each folder contains implementations of a certain type (cpu, single threaded -> gpu distributed, etc).

These are named o0 (unoptimized) .. oN (most optimized)


Implementations

  1. Baselines
  • CPU, singlethreaded (numpy): 120 GFLOPS
  • CPU, multithreaded (torch/numpy): 1 TFLOPS
  • GPU (torch): 24 TFLOPS
  1. Naive Implementation -- Python : 0.0 GFLOPS (not measurable)

  2. Naive Implementation -- C : 2.47 GFLOPS

  3. Lowered time complexity -- C : 7.13 GFLOPS

  4. Single threaded Optimizations -- C : 58 GFLOPS

  5. Multi-threaded Implementation -- C : 625 GFLOPS

  6. GPU Acceleration -- C cuda : 5 TFLOPS

  7. Distributed Computing -- Multi GPU

  8. Distributed Computing -- Multi Node

  9. Compiler -- Python (CPU) : 150 GFLOPS


Benchmarking

  • 12 cores

  • Base clock 3.7GHz

  • Boost clock 4.8GHz

  • 24 threads (why is this not infinite?)

  • Memory transfer: 3200 MT/s

  • Cache info:

NUMANode L#0 (P#0 31GB)
L3 L#0 (32MB)
  L2 L#0 (512KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
    PU L#0 (P#0)
    PU L#1 (P#12)
  L2 L#1 (512KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
    PU L#2 (P#1)
    PU L#3 (P#13)
  L2 L#2 (512KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
    PU L#4 (P#2)
    PU L#5 (P#14)
  L2 L#3 (512KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3
    PU L#6 (P#3)
    PU L#7 (P#15)
  L2 L#4 (512KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4
    PU L#8 (P#4)
    PU L#9 (P#16)
  L2 L#5 (512KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5
    PU L#10 (P#5)
    PU L#11 (P#17)
L3 L#1 (32MB)
  L2 L#6 (512KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6
    PU L#12 (P#6)
    PU L#13 (P#18)
  L2 L#7 (512KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7
    PU L#14 (P#7)
    PU L#15 (P#19)
  L2 L#8 (512KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8
    PU L#16 (P#8)
    PU L#17 (P#20)
  L2 L#9 (512KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9
    PU L#18 (P#9)
    PU L#19 (P#21)
  L2 L#10 (512KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10
    PU L#20 (P#10)
    PU L#21 (P#22)
  L2 L#11 (512KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11
    PU L#22 (P#11)
    PU L#23 (P#23)
  • 32 GB GDDR4
  • ??? bandwidth from RAM -> L3
  • 10496 CUDA cores
  • 328 Tensor cores
  • Boost Clock 1.40 GHz
  • Boost Clock 1.7 GHz
  • 24 GB GDDR6X memory
  • 936 GB/s memory bandwidth

Distributed


Theoretical bounds

What is possible with the chips we have today.

Supertheoretical bounds

What is possible with the chips we COULD have in the future.


Resources

https://github.com/OpenMathLib/OpenBLAS/tree/develop

https://github.com/wangzyon/NVIDIA_SGEMM_PRACTICE/tree/master

https://github.com/siboehm/SGEMM_CUDA

http://blog.ezyang.com/2019/05/pytorch-internals/

https://leimao.github.io/article/CUDA-Matrix-Multiplication-Optimization/

https://en.algorithmica.org/hpc/cpu-cache/associativity/

https://arxiv.org/abs/2301.03598

About

can you multiply two matrices?

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published