Skip to content

Scrapes skin data from CSGOStash and saves it in JSON format.

License

Notifications You must be signed in to change notification settings

supr3meofficial/csgostash-scraper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

csgostash-scraper

Scrapes skin data from CSGOStash and saves it in JSON format.

Current Release: v0.4.1

What data does it scrape?

Cases, Collections and Souvenir Packages and their respective items.
More to be added.

How does it work?

Data is scraped from CSGOStash and is saved onto JSON files and pickle objects.

Where can I use it?

You can use the provided pickles in a Python project by importing the csgostash_scraper folder, or you may also use the JSON data for whatever project you would like.

Installation

  1. Install Python 3

This is required to run the scraper.

  1. Set up venv

Just do python3 -m venv venv

  1. Install dependencies

This is pip install -U -r requirements.txt

  1. Run the script

Use the following syntax python3 main.py

What it looks like

Terminal:

$ python3 main.py
Retrieving: MAC-10 | Copper Borre
Retrieving: XM1014 | Frost Borre
Retrieving: CZ75-Auto | Emerald Quartz
Retrieving: SCAR-20 | Brass
..

JSON File:

{
  "name": "CS:GO Weapon Case",
  "image_url": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXU5A1PIYQNqhpOSV-fRPasw8rsRVx4MwFo5_T3eAQ3i6DMIW0X7ojiwoHax6egMOKGxj4G68Nz3-jCp4itjFWx-ktqfSmtcwqVx6sT/256fx256f",
  "content": {
    "Rare Special Items": [
      {
        "name": "★ Bayonet | Boreal Forest",
        "desc": "It has been painted using a forest camouflage hydrographic.",
        "lore": "The woods can be a dangerous place... never travel alone",
        "can_be_souvenir": false,
        "can_be_stattrak": true,
        "wears": {
          "Factory New": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXH5ApeO4YmlhxYQknCRvCo04DEVlxkKgpotLu8JAllx8zAaAJE486zh5S0lfjmNrrdqWdY781lteXA54vwxgCxqBE6Nzv0IIbBdQU6ZAuC-Vm6wu68hMe46MzIzCE26SQk7S3YzECpwUYbTEk7wBI/512fx384f",
          "Minimal Wear": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXH5ApeO4YmlhxYQknCRvCo04DEVlxkKgpotLu8JAllx8zAaAJE486zh5S0lfjmNrrdqWdY781lteXA54vwxgCxqBE6Nzv0IIbBdQU6ZAuC-Vm6wu68hMe46MzIzCE26SQk7S3YzECpwUYbTEk7wBI/512fx384f",
          "Field-Tested": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXH5ApeO4YmlhxYQknCRvCo04DEVlxkKgpotLu8JAllx8zAaAJE486zh5S0lfjmNrrdqWZU7Mxkh9bN9J7yjRrl_kFrYGjxcNOWewQ3MAmE-FG2yOe7gpW0uZyam3A2siVw7S6MzR3in1gSOUa5wz9E/512fx384f",
          "Well-Worn": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXH5ApeO4YmlhxYQknCRvCo04DEVlxkKgpotLu8JAllx8zAaAJE486zh5S0lfjmNrrdqWZU7Mxkh9bN9J7yjRrl_kFrYGjxcNOWewQ3MAmE-FG2yOe7gpW0uZyam3A2siVw7S6MzR3in1gSOUa5wz9E/512fx384f",
          "Battle-Scarred": "https://steamcommunity-a.akamaihd.net/economy/image/-9a81dlWLwJ2UUGcVs_nsVtzdOEdtWwKGZZLQHTxDZ7I56KU0Zwwo4NUX4oFJZEHLbXH5ApeO4YmlhxYQknCRvCo04DEVlxkKgpotLu8JAllx8zAaAJE486zh5S0lfjmNrrdqWNU6dNoteXA54vwxgDhrxJtMGj7II7GcVI5MgqE-gDsyObng5W_vM-bmyFi6CkitnbayRKpwUYbBWXvKcI/512fx384f"
        }
      } 
...

License

Released under the MIT license.