Skip to content

sykoravojtech/VideoMamba_SVT_VideoUnderstanding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Video Transformers for Classification and Captioning

Table of Contents
  1. Goal of the Project
  2. Description
  3. Repository structure
  4. How to run
  5. License
  6. Citation

Goal of the Project

Investigate the application of transformer-based models for video classification and captioning tasks, focusing on the Self-supervised Video Transformer and Video Mamba models.

Description

In this project we investigated the application of transformer-based models for video classification and captioning tasks, focusing on the Self-supervised Video Transformer and Video Mamba models. We explored the effectiveness of these models on a complex dataset, which features intricate human interactions and daily life activities. Our approach involves adapting the pre-trained SVT encoder for downstream tasks while keeping it frozen, allowing us to assess its performance on out-of-distribution datasets. We also developed a specialized data processing pipeline to handle the unique challenges presented by the dataset. By comparing the performance of SVT with Video Mamba, we provide insights into the capabilities of self-supervised models in video understanding tasks. Our research contributes to the field by demonstrating the potential of transformer-based models in handling complex video data which could potentially reduce reliance on large labeled datasets for effective video analysis in the future.

Repository structure

  • assets (media files for example, display)
  • checkpoints (saved model weights)
  • data (datasets)
  • src
    • config
    • datasets
    • models
    • utils

How to run

Set-up

# clone project   
git clone https://github.com/sykoravojtech/PracticalML_2024.git

# install dependencies   
cd PracticalML_2024
pip install -r requirements.txt

# install pytorchvideo
git clone https://github.com/facebookresearch/pytorchvideo
cd pytorchvideo
pip install -v -e .
cd ..

# download pretrained weights
python download_weights.py


# This installs cuda & C++ modules causal_conv1d_cuda and selective_scan_cuda. It also downloads 3 model checkpoints to PracticalML_2024/checkpoints/videomamba.
chmod +x ./src/models/encoders/videomamba/setup.sh
./src/models/encoders/videomamba/setup.sh

Play with the UI app

streamlit run --server.port 8503 app.py

Models evaluation

# 1. Evaluation of multi-action classification on Charades dataset (SVT)
python evaluate_cls_model.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml --weight checkpoint
s/cls_svt_charades_s224_f8_exp0/epoch=18-val_mAP=0.165.ckpt

# 2. Evaluation of multi-action classification on Charades dataset (VideoMamba)
python evaluate_cls_model.py --config src/config/cls_vm_charades_s224_f8_exp0.yaml --weight checkpoints/cls_vm_ch_exp7/epoch=142-val_mAP=0.227.ckpt

# 3. Evaluation of captioning on Charades dataset (SVT)
python evaluate_cap_model.py --config src/config/cap_svt_charades_s224_f8_exp0.yaml --weight checkpoints/cap_svt_charades_s224_f8_exp_32_train_all/epoch=11-step=23952.ckpt

# 4. Evaluation of captioning on Charades dataset (VideoMamba)
python evaluate_cap_model.py --config src/config/cap_vm_charades_s224_f8_exp0.yaml --weight checkpoints/cap_vm_charades_s224_f8_exp0_16_train_all/epoch=14-step=29940.ckpt

Training

# download data
python download_data.py -ucf
python download_data.py -charades
cd data/raw/
mkdir Charades_frames
wget https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/Charades_v1_rgb.tar
tar -xvf Charades_v1_rgb.tar
cd ../../..

# generate Charades annotations
python charades_convert_anns.py

# visualize 1 sample of data, the result is saved in assets
python visualize_dataset.py

# visualize 1 sample of Charades multilabel classification dataset
python visualize_dataset.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml
# visualize 1 sample of Charades captioning dataset
python visualize_dataset.py --config src/config/cap_svt_charades_s224_f8_exp0.yaml


# training demo on UCF101 dataset
python train.py

# training multi-action classification on Charades dataset
python train.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml
# head-only finetuning
python create_encoding.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml
python train_cls_head.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml


# training captioning on Charades dataset
python train.py --config src/config/cap_svt_charades_s224_f8_exp0.yaml
# head-only finetuning
python create_encoding.py --config src/config/cls_svt_charades_s224_f8_exp0.yaml
python train_cap_head.py --config src/config/cap_svt_charades_s224_f8_exp0.yaml

Visualize training log at https://wandb.ai/PracticalML2024/PracticalML

License

Distributed under the MIT License. See LICENSE for more information.

Citation

@article{transf_cls_cap,
  title={Video Transformers for Classification and Captioning},
  author={Vojtěch Sýkora, Nam Nguyen The, Leon Trochelmann, Swadesh Jana, Eric Nazarenus},
  year={2024}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published