Skip to content

techisdead/googlePolylines

 
 

Repository files navigation

CRAN_Status_Badge downloads Github Stars Travis-CI Build Status Coverage Status

googlePolylines

The goal of googlePolylines is to encode and decode coordinates using Google's polyline encoding algorithm

Polyline encoding is a lossy compression algorithm that allows you to store a series of coordinates as a single string.

Installation

Version 0.2.0 will be on CRAN and can be installed through

install.packages("googlePolylines")

The development version can be installed from github with:

# install.packages("devtools")
devtools::install_github("SymbolixAU/googlePolylines")

Scope

Because googlePolylines uses Google's polyline encoding algorithm, all functions assume Google Web Mercator projection (WSG 84 / EPSG:3857 / EPSG:900913) for inputs and outputs. Objects that use other projections should be re-projected into EPSG:3857 before using these functions.

googlePolylines supports Simple Feature objects (from library(sf)), data.frames, and vectors of lon/lat coordinates.

Supported sf types

  • POINT
  • MULTIPOINT
  • LINESTRING
  • MULTILINESTRING
  • POLYGON
  • MULTIPOLYGON
  • GEOMETRY

Examples

googlePolylines contains functions to encode coordinates into polylines, and also to parse polylines to and from well-known text format.

encode

library(googlePolylines)
library(sf)

# create data

df <- data.frame(myId = c(1,1,1,1,1,1,1,1,2,2,2,2),
				lineId = c(1,1,1,1,2,2,2,2,1,1,1,2),
				lon = c(-80.190, -66.118, -64.757, -80.190,  -70.579, -67.514, -66.668, -70.579, -70, -49, -51, -70),
				lat = c(26.774, 18.466, 32.321, 26.774, 28.745, 29.570, 27.339, 28.745, 22, 23, 22, 22))

p1 <- as.matrix(df[1:4, c("lon", "lat")])
p2 <- as.matrix(df[5:8, c("lon", "lat")])
p3 <- as.matrix(df[9:12, c("lon", "lat")])

# create `sf` collections

point <- sf::st_sfc(sf::st_point(x = c(df[1,"lon"], df[1,"lat"])))
multipoint <- sf::st_sfc(sf::st_multipoint(x = as.matrix(df[1:2, c("lon", "lat")])))
polygon <- sf::st_sfc(sf::st_polygon(x = list(p1, p2)))
linestring <- sf::st_sfc(sf::st_linestring(p3))
multilinestring <- sf::st_sfc(sf::st_multilinestring(list(p1, p2)))
multipolygon <- sf::st_sfc(sf::st_multipolygon(x = list(list(p1, p2), list(p3))))

# combine all types into one collection

sf <- rbind(
	sf::st_sf(geo = polygon),
	sf::st_sf(geo = multilinestring),
	sf::st_sf(geo = linestring),
	sf::st_sf(geo = point),
	sf::st_sf(geo = multipoint)
	)

sf

# Simple feature collection with 5 features and 0 fields
# geometry type:  GEOMETRY
# dimension:      XY
# bbox:           xmin: -80.19 ymin: 18.466 xmax: -49 ymax: 32.321
# epsg (SRID):    NA
# proj4string:    NA
#                              geo
# 1 POLYGON ((-80.19 26.774, -6...
# 2 MULTILINESTRING ((-80.19 26...
# 3 LINESTRING (-70 22, -49 23,...
# 4          POINT (-80.19 26.774)
# 5 MULTIPOINT (-80.19 26.774, ...

# encode sf objects

encode(sf)

                                       geo
# 1         POLYGON: ohlbDnbmhN~suq@am{tA...
# 2 MULTILINESTRING: ohlbDnbmhN~suq@am{tA...
# 3      LINESTRING: _{geC~zfjL_ibE_qd_C~...
# 4                     POINT: ohlbDnbmhN...
# 5                MULTIPOINT: ohlbDnbmhN...


# encode data frame as a list of points

encode(df)
# [1] "ohlbDnbmhN~suq@am{tAw`qsAeyhGvkz`@fge}Aw}_Kycty@gc`DesuQvvrLofdDorqGtzzVfkdh@uapB_ibE_qd_C~hbE~reK?~|}rB"


Polyline to well-known text


enc <- encode(sf)
wkt <- polyline_wkt(enc)
wkt
                                                                                                                                       geo
# 1 POLYGON ((-80.19 26.774, -66.1...
# 2 MULTILINESTRING ((-80.19 26.77...
# 3 LINESTRING (-70 22, -49 23, -5...
# 4          POINT (-80.19 26.774)...
# 5 MULTIPOINT ((-80.19 26.774),(-...

Well-known text to polyline

enc2 <- wkt_polyline(wkt)

Motivation

Encoding coordinates into polylines reduces the size of objects and can increase the speed in plotting Google Maps

library(sf)
nc <- st_read(system.file("shape/nc.shp", package="sf"))

encoded <- encode(nc, FALSE)
encodedLite <- encode(nc, TRUE)

vapply(mget(c('nc', 'encoded', 'encodedLite') ), function(x) { format(object.size(x), units = "Kb") }, '')
#         nc   encoded  encodedLite 
# "132.2 Kb"  "83.3 Kb"   "50.5 Kb"
library(leaflet)
library(microbenchmark)
library(sf)
library(googleway)

nc <- st_read(system.file("shape/nc.shp", package="sf"))

microbenchmark(

  google = {
    df <- encode(nc)

    ## you need a Google Map API key to use this function
    google_map(key = mapKey) %>%
      add_polygons(data = df, polyline = "geometry")
  },

  leaflet = {
    leaflet(nc) %>%
      addTiles() %>%
      addPolygons()
  },
  times = 25
)

# Unit: milliseconds
#     expr      min        lq     mean    median       uq      max neval
#   google  8.16810  9.164254 10.18863  9.776755 11.50545 13.22828    25
#  leaflet 53.90745 58.151913 61.50368 60.217514 64.08792 74.51588    25
 

These benchmarks don't account for the time taken for the browswer to render the maps

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 54.7%
  • C++ 45.3%