Skip to content

Commit

Permalink
Revert "merge upstream changes before adding support for torchbench (#8
Browse files Browse the repository at this point in the history
…)" (#10)

This reverts commit fd3a6cd.
  • Loading branch information
tianyu-l authored Aug 13, 2024
1 parent fd3a6cd commit d86885f
Show file tree
Hide file tree
Showing 47 changed files with 945 additions and 3,378 deletions.
1 change: 0 additions & 1 deletion .ci/docker/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
torch >= 2.3.0
torchdata >= 0.8.0
datasets >= 2.19.0
tomli >= 1.1.0 ; python_version < "3.11"
tensorboard
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/integration_test_4gpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,6 @@ jobs:
pip config --user set global.progress_bar off
python -m pip install --force-reinstall --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
USE_CPP=0 python -m pip install git+https://github.com/pytorch/ao.git
python -m pip install --pre torchdata --index-url https://download.pytorch.org/whl/nightly/
mkdir artifacts-to-be-uploaded
python ./test_runner.py artifacts-to-be-uploaded --ngpu 4
1 change: 1 addition & 0 deletions .github/workflows/integration_test_8gpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -37,5 +37,6 @@ jobs:
pip config --user set global.progress_bar off
python -m pip install --force-reinstall --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
python -m pip install --pre torchdata --index-url https://download.pytorch.org/whl/nightly/
mkdir artifacts-to-be-uploaded
python ./test_runner.py artifacts-to-be-uploaded --ngpu 8
1 change: 1 addition & 0 deletions .github/workflows/unit_test_cpu.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -25,4 +25,5 @@ jobs:
pip config --user set global.progress_bar off
pip install --force-reinstall --pre torch --index-url https://download.pytorch.org/whl/nightly/cpu
pip install --pre torchdata --index-url https://download.pytorch.org/whl/nightly
pytest test --cov=. --cov-report=xml --durations=20 -vv
23 changes: 7 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,16 +18,6 @@ Our guiding principles when building `torchtitan`:

[![Welcome to torchtitan!](assets/images/titan_play_video.png)](https://youtu.be/ee5DOEqD35I?si=_B94PbVv0V5ZnNKE "Welcome to torchtitan!")

### Dive into the code

You may want to see how the model is defined or how parallelism techniques are applied. For a guided tour, see these files first:
* [train.py](https://github.com/pytorch/torchtitan/blob/main/train.py) - the main training loop and high-level setup code
* [torchtitan/parallelisms/parallelize_llama.py](https://github.com/pytorch/torchtitan/blob/main/torchtitan/parallelisms/parallelize_llama.py) - helpers for applying Data Parallel, Tensor Parallel, activation checkpointing, and `torch.compile` to the model
* [torchtitan/parallelisms/pipeline_llama.py](https://github.com/pytorch/torchtitan/blob/main/torchtitan/parallelisms/pipeline_llama.py) - helpers for applying Pipeline Parallel to the model
* [torchtitan/checkpoint.py](https://github.com/pytorch/torchtitan/blob/main/torchtitan/checkpoint.py) - utils for saving/loading distributed checkpoints
* [torchtitan/float8.py](https://github.com/pytorch/torchtitan/blob/main/torchtitan/float8.py) - utils for applying Float8 techniques
* [torchtitan/models/llama/model.py](https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/llama/model.py) - the Llama model definition (shared for Llama2 and Llama3 variants)

## Pre-Release Updates:
#### (4/25/2024): `torchtitan` is now public but in a pre-release state and under development.
Currently we showcase pre-training **Llama 3 and Llama 2** LLMs of various sizes from scratch. `torchtitan` is tested and verified with the PyTorch nightly version `torch-2.4.0.dev20240412`. (We recommend latest PyTorch nightly).
Expand All @@ -43,18 +33,18 @@ Currently we showcase pre-training **Llama 3 and Llama 2** LLMs of various sizes
6. Learning rate scheduler, meta init, Optional Fused RMSNorm
7. All options easily configured via [toml files](train_configs/)
8. [Interoperable checkpoints](docs/checkpoint.md) which can be loaded directly into [`torchtune`](https://github.com/pytorch/torchtune) for fine tuning
9. [Float8 support](docs/float8.md)

We report our [Performance](docs/performance.md) verified on 64 A100 GPUs


### Coming soon

1. Async checkpointing
2. Context Parallel
3. 3D Pipeline Parallel
4. `torch.compile` support
5. Scalable data loading solution
2. FP8 support
3. Context Parallel
4. 3D Pipeline Parallel
5. `torch.compile` support
6. Scalable data loading solution


## Installation
Expand All @@ -64,6 +54,7 @@ git clone https://github.com/pytorch/torchtitan
cd torchtitan
pip install -r requirements.txt
pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121 # or cu118
pip3 install --pre torchdata --index-url https://download.pytorch.org/whl/nightly
```

### Downloading a tokenizer
Expand All @@ -75,7 +66,7 @@ Once you have confirmed access, you can run the following command to download th
```bash
# Get your HF token from https://huggingface.co/settings/tokens

# llama3 or 3.1 tokenizer.model
# llama3 tokenizer.model
python torchtitan/datasets/download_tokenizer.py --repo_id meta-llama/Meta-Llama-3-8B --tokenizer_path "original" --hf_token=...

# llama2 tokenizer.model
Expand Down
2 changes: 2 additions & 0 deletions create_seed_checkpoint.sh
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@

set -ex

export USE_LIBUV=1
TRAINER_DIR=${1:-/home/$USER/local/torchtitan}
NGPU=1
LOG_RANK=0
CONFIG_FILE=${CONFIG_FILE:-"./train_configs/debug_model.toml"}
Expand Down
23 changes: 0 additions & 23 deletions docs/composability.md

This file was deleted.

18 changes: 0 additions & 18 deletions docs/float8.md

This file was deleted.

78 changes: 40 additions & 38 deletions estimation.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,19 +9,22 @@
import os

import torch
import torch.nn.functional as F
from torch._guards import active_fake_mode
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed import destroy_process_group
from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker
from torch.distributed.tensor.parallel import loss_parallel
from torch.testing._internal.distributed.fake_pg import FakeStore

from torchtitan.config_manager import JobConfig
from torchtitan.datasets import build_tokenizer
from torchtitan.float8 import Float8Handler
from torchtitan.logging import init_logger, logger
from torchtitan.datasets import create_tokenizer
from torchtitan.float8_linear import build_fp8_linear
from torchtitan.logging_utils import init_logger, logger
from torchtitan.lr_scheduling import get_lr_schedulers
from torchtitan.models import model_name_to_cls, model_name_to_tokenizer, models_config
from torchtitan.optimizer import build_lr_schedulers, build_optimizers
from torchtitan.parallelisms import models_parallelize_fns, ParallelDims
from train import get_train_context
from train import build_optimizers


def estimate_memory(job_config: JobConfig):
Expand Down Expand Up @@ -58,18 +61,16 @@ def estimate_memory(job_config: JobConfig):
logger.info("Compiled RMSNorm is not supported yet. Switching to RMSNorm.")
job_config.model.norm_type = "rmsnorm"

if job_config.training.compile or job_config.experimental.enable_compiled_autograd:
if job_config.training.compile:
logger.info("Compile mode is not supported yet. Switching to eager mode.")
job_config.training.compile = False
job_config.experimental.enable_compiled_autograd = False

parallel_dims = ParallelDims(
dp=job_config.training.data_parallel_degree,
tp=job_config.training.tensor_parallel_degree,
pp=job_config.experimental.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=job_config.training.enable_loss_parallel,
dp_type=job_config.training.data_parallel_type,
)

device = torch.device(f"cuda:{int(os.environ['LOCAL_RANK'])}")
Expand All @@ -92,18 +93,16 @@ def estimate_memory(job_config: JobConfig):

# build tokenizer
tokenizer_type = model_name_to_tokenizer[model_name]
tokenizer = build_tokenizer(tokenizer_type, job_config.model.tokenizer_path)
tokenizer = create_tokenizer(tokenizer_type, job_config.model.tokenizer_path)

train_context = get_train_context(
parallel_dims.loss_parallel_enabled,
job_config.experimental.enable_compiled_autograd,
# loss_parallel enables dispatching to efficient loss operators
loss_parallel_ctx = (
loss_parallel if parallel_dims.loss_parallel_enabled else contextlib.nullcontext
)

# loss fn can be shared by pipeline-parallel or non-pp execution
def loss_fn(pred, labels):
return torch.nn.functional.cross_entropy(
pred.flatten(0, 1), labels.flatten(0, 1)
)
return F.cross_entropy(pred.flatten(0, 1), labels.flatten(0, 1))

# build model (using meta init)
model_cls = model_name_to_cls[model_name]
Expand All @@ -122,25 +121,32 @@ def loss_fn(pred, labels):
f"Building {model_name} {job_config.model.flavor} with {model_config}"
)
with torch.device("meta"):
model = model_cls.from_model_args(model_config)
whole_model = model_cls.from_model_args(model_config)

# a no-op hander if float8 is not enabled
float8_handler = Float8Handler(job_config, parallel_dims)
# swap to Float8Linear based on float8 configs
float8_handler.convert_to_float8_training(model)
# apply fp8 linear module swap
if job_config.training.fp8_linear:
build_fp8_linear(whole_model, job_config)

# apply PT-D DP/TP parallelisms and activation checkpointing
models_parallelize_fns[model_name](model, world_mesh, parallel_dims, job_config)
model_parts = [whole_model]
model_parts = [
models_parallelize_fns[model_name](m, world_mesh, parallel_dims, job_config)
for m in model_parts
]

init_device = "cuda"
for model in model_parts:
model.to_empty(device=init_device)

model.to_empty(device="cuda")
if not active_fake_mode():
model.init_weights()
model.train()
whole_model.init_weights()

# build optimizer after applying parallelisms to the model
optimizers = build_optimizers([model], job_config)
lr_schedulers = build_lr_schedulers(optimizers.optimizers, job_config)
optimizers = build_optimizers(model_parts, job_config)
lr_schedulers = get_lr_schedulers(optimizers.optimizers, job_config)

for model in model_parts:
model.train()
logger.info(f"Vocab size: {model_config.vocab_size}")
# Create a dummy batch instead of loading from a dataset
batch = (
Expand All @@ -157,31 +163,27 @@ def loss_fn(pred, labels):
device="cuda",
),
)
fsdp_memtracker = FSDPMemTracker(mod=model, optm=optimizers.optimizers[0])
fsdp_memtracker = FSDPMemTracker(mod=whole_model, optm=optimizers.optimizers[0])
fsdp_memtracker.track_inputs(batch)

with fsdp_memtracker:
for iter_idx in range(2):
input_ids, labels = batch
# train step
with train_context():
pred = model(input_ids)
with loss_parallel_ctx():
pred = whole_model(input_ids)
loss = loss_fn(pred, labels)
del pred
loss.backward()

# clip gradients
torch.nn.utils.clip_grad_norm_(
model.parameters(), job_config.training.max_norm, foreach=True
)
# sync float8 amaxes and scales
float8_handler.sync_float8_amax_and_scale_history(model)
for model in model_parts:
torch.nn.utils.clip_grad_norm_(
model.parameters(), job_config.training.max_norm, foreach=True
)
# optimizer step
optimizers.step()
lr_schedulers.step()
# calculate float8 dynamic amax/scale for all-parameter for FSDP2
# it issues a single all-reduce for all parameters at once for better performance
float8_handler.precompute_float8_dynamic_scale_for_fsdp(model)
optimizers.zero_grad()
print(f"Peak Memory at iter: {iter_idx}")
fsdp_memtracker.display_snapshot("peak", units="MiB", tabulate=True)
Expand Down Expand Up @@ -215,4 +217,4 @@ def loss_fn(pred, labels):
try:
estimate_memory(config)
finally:
torch.distributed.destroy_process_group()
destroy_process_group()
1 change: 1 addition & 0 deletions multinode_trainer.slurm
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ export NCCL_SOCKET_IFNAME="eth0,en,eth,em,bond"
export NCCL_BUFFSIZE=2097152
#export TORCH_DIST_INIT_BARRIER=1
export FI_EFA_SET_CUDA_SYNC_MEMOPS=0
#export USE_LIBUV=1
CONFIG_FILE=${CONFIG_FILE:-"./train_configs/llama2_13b.toml"}

dcgmi profile --pause
Expand Down
28 changes: 25 additions & 3 deletions run_llama_train.sh
Original file line number Diff line number Diff line change
Expand Up @@ -7,18 +7,40 @@

set -ex

# libUV is a scalable backend for TCPStore which is used in processGroup
# rendezvous. This is the recommended backend for distributed training.
export USE_LIBUV=1
TRAINER_DIR=${TRAINER_DIR:-/home/$USER/local/torchtitan}

# use envs as local overrides for convenience
# e.g.
# LOG_RANK=0,1 NGPU=4 ./run_llama_train.sh

NGPU=${NGPU:-"8"}
NNODES=${NNODES:-"1"}

# by default log just rank 0 output,
LOG_RANK=${LOG_RANK:-0}


CONFIG_FILE=${CONFIG_FILE:-"./train_configs/debug_model.toml"}

overrides=""
if [ $# -ne 0 ]; then
overrides="$*"
fi

torchrun --nproc_per_node=${NGPU} --rdzv_backend c10d --rdzv_endpoint="localhost:0" \
--local-ranks-filter ${LOG_RANK} --role rank --tee 3 \
train.py --job.config_file ${CONFIG_FILE} $overrides
# Check if --estimate.memory=True is in the arguments
if echo "$overrides" | grep -q -- "--memory_estimation.enabled"; then
# Calculate WORLD_SIZE as the product of NGPU and NNODES
# Export WORLD_SIZE and LOCAL_RANK
export WORLD_SIZE=$((NGPU * NNODES))
export LOCAL_RANK=0
python estimation.py --job.config_file ${CONFIG_FILE} $overrides
else
# Call train.py if not in estimation mode
# TORCH_TRACE="outputs/compile_trace" \
torchrun --nproc_per_node=${NGPU} --rdzv_backend c10d --rdzv_endpoint="localhost:0" \
--local-ranks-filter ${LOG_RANK} --role rank --tee 3 \
train.py --job.config_file ${CONFIG_FILE} $overrides
fi
Loading

0 comments on commit d86885f

Please sign in to comment.