-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding UndirectedGraphs module and tests
Signed-off-by: Stephan Merz <[email protected]>
- Loading branch information
1 parent
997d018
commit 2cee5a3
Showing
2 changed files
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
------------------------- MODULE UndirectedGraphs ---------------------------- | ||
(****************************************************************************) | ||
(* Representation of undirected graphs in TLA+. In contrast to module *) | ||
(* Graphs, edges are represented as unordered pairs {a,b} of nodes, thus *) | ||
(* enforcing symmetry. *) | ||
(****************************************************************************) | ||
LOCAL INSTANCE Naturals | ||
LOCAL INSTANCE Sequences | ||
LOCAL INSTANCE SequencesExt | ||
LOCAL INSTANCE FiniteSets | ||
LOCAL INSTANCE Folds | ||
|
||
IsUndirectedGraph(G) == | ||
/\ G = [node |-> G.node, edge |-> G.edge] | ||
/\ \A e \in G.edge : \E a,b \in G.node : e = {a,b} | ||
|
||
IsLoopFreeUndirectedGraph(G) == | ||
/\ G = [node |-> G.node, edge |-> G.edge] | ||
/\ \A e \in G.edge : \E a,b \in G.node : a # b /\ e = {a,b} | ||
|
||
UndirectedSubgraph(G) == | ||
{H \in [node : SUBSET G.node, edge : SUBSET G.edge] : IsUndirectedGraph(H)} | ||
|
||
----------------------------------------------------------------------------- | ||
Path(G) == {p \in Seq(G.node) : | ||
/\ p # << >> | ||
/\ \A i \in 1..(Len(p)-1) : {p[i], p[i+1]} \in G.edge} | ||
|
||
SimplePath(G) == | ||
\* A simple path is a path with no repeated nodes. | ||
{p \in SeqOf(G.node, Cardinality(G.node)) : | ||
/\ p # << >> | ||
/\ Cardinality({ p[i] : i \in DOMAIN p }) = Len(p) | ||
/\ \A i \in 1..(Len(p)-1) : {p[i], p[i+1]} \in G.edge} | ||
|
||
(****************************************************************************) | ||
(* Compute the connected components of an undirected graph: initially each *) | ||
(* node is in a component by itself, then iterate over the edges to merge *) | ||
(* the components related by the edge. *) | ||
(****************************************************************************) | ||
ConnectedComponents(G) == | ||
LET base == {{n} : n \in G.node} | ||
choice(E) == CHOOSE e \in E : TRUE | ||
firstNode(e) == CHOOSE a \in G.node : \E b \in G.node : e = {a,b} | ||
secondNode(e) == CHOOSE b \in G.node : e = {firstNode(e), b} | ||
nodesOfEdge(e) == <<firstNode(e), secondNode(e)>> | ||
merge(e, comps) == | ||
LET compA == CHOOSE c \in comps : e[1] \in c | ||
compB == CHOOSE c \in comps : e[2] \in c | ||
IN IF compA = compB THEN comps | ||
ELSE (comps \ {compA, compB}) \union {compA \union compB} | ||
IN MapThenFoldSet(merge, base, nodesOfEdge, choice, G.edge) | ||
|
||
AreConnectedIn(m, n, G) == | ||
\E comp \in ConnectedComponents(G) : m \in comp /\ n \in comp | ||
|
||
IsStronglyConnected(G) == | ||
Cardinality(ConnectedComponents(G)) = 1 | ||
============================================================================= |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
------------------------- MODULE GraphsTests ------------------------- | ||
EXTENDS UndirectedGraphs, TLCExt | ||
|
||
ASSUME LET T == INSTANCE TLC IN T!PrintT("UndirectedGraphsTests") | ||
|
||
ASSUME AssertEq(SimplePath([edge|-> {}, node |-> {}]), {}) | ||
ASSUME AssertEq(SimplePath([edge|-> {}, node |-> {1,2,3}]), {<<1>>, <<2>>, <<3>>}) | ||
ASSUME AssertEq(SimplePath([edge|-> {{1,2}}, node |-> {1,2,3}]), | ||
{ <<1>>, <<2>>, <<3>>, <<1,2>>, <<2,1>>} ) | ||
|
||
ASSUME AssertEq(ConnectedComponents([edge|-> {}, node |-> {}]), {}) | ||
ASSUME LET G == [edge|-> {{1,2}}, node |-> {1,2,3}] | ||
IN /\ AssertEq(ConnectedComponents(G), {{1,2}, {3}}) | ||
/\ AreConnectedIn(1, 2, G) | ||
/\ ~ AreConnectedIn(1, 3, G) | ||
|
||
AssertEq(ConnectedComponents([edge|-> {{1,2}}, node |-> {1,2,3}]), | ||
{{1,2}, {3}}) | ||
ASSUME LET G == [node |-> {1,2,3,4,5}, | ||
edge |-> {{1,3}, {1,4}, {2,3}, {2,4}, {3,5}, {4,5}}] | ||
IN /\ AssertEq(ConnectedComponents(G), {{1,2,3,4,5}}) | ||
/\ IsStronglyConnected(G) | ||
|
||
===================================================================== |