Skip to content
/ BFA Public

The official code for the paper `Improving the transferability of adversarial examples through black-box feature attacks`.

Notifications You must be signed in to change notification settings

tlemangen/BFA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BFA

This repository contains the PyTorch code for the paper:

Improving the transferability of adversarial examples through black-box feature attacks (Neurocomputing 2024)

Maoyuan Wang, Jinwei Wang, Bin Ma, Xiangyang Luo.

Datasets

The size of images is set to 299x299.

Find the class folders in a dataset structured as follows:

Caltech-256

directory/
├── train
│   ├── 001.xxx
│   ├── 002.xxx
│   ├── ...
│   └── 256.xxx
│       └── yyy.jpg
└── test
    ├── 001.xxx
    ├── 002.xxx
    ├── ...
    └── 256.xxx
        └── yyy.jpg

normalization:

import torchvision.transforms as T

caltech256_transform = T.Compose([
    T.ToTensor(),
    T.Resize(340),
    T.CenterCrop(299),
    T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

NIPS2017

directory/
├── 0.png
├── 1.png
├── ...
└── 999.jpg

normalization:

import torchvision.transforms as T

nips2017_transform = T.Compose([
    T.ToTensor(),
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

ImageNette

directory/
├── train
│   ├── nxxx
│   ├── nxxx
│   ├── ...
│   └── nxxx
│       └── yyy.JPEG
└── val
    ├── nxxx
    ├── nxxx
    ├── ...
    └── nxxx
        └── yyy.JPEG

normalization:

import torchvision.transforms as T

imagenette_transform = T.Compose([
    T.ToTensor(),
    T.Resize(int(299 * 1.1)),
    T.CenterCrop(299),
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

Pre-trained Models

Caltech-256

Models Packages Accuracy (%) Weights
Inception-v3 Pytorch 85.7 pytorch_inception_v3_caltech256.pth
Inception-v4 timm 77.8 timm_inception_v4_caltech256.pth
Inception-ResNet-v2 timm 87.9 timm_inception_resnet_v2_caltech256.pth
ResNet-50 Pytorch 84.2 pytorch_resnet_50_caltech256.pth
ResNet-152 Pytorch 83.4 pytorch_resnet_152_caltech256.pth
VGG-16 Pytorch 78.1 pytorch_vgg_16_caltech256.pth
VGG-19 Pytorch 77.1 pytorch_vgg_19_caltech256.pth
DenseNet-121 Pytorch 84.6 pytorch_densenet_121_caltech256.pth
DenseNet-169 Pytorch 86.3 pytorch_densenet_169_caltech256.pth

NIPS2017

Models Packages Accuracy (%) Weights
Inception-v3 (Inc-v3-p) Pytorch 95.3 inception_v3_google-0cc3c7bd.pth
Inception-v3 (Inc-v3-t) timm 95.3 inception_v3_google-1a9a5a14.pth
Inception-v4 (Inc-v4-t) timm 94.7 inceptionv4-8e4777a0.pth
Inception-ResNet-v2 (IncRes-v2-t) timm 97.2 inception_resnet_v2-940b1cd6.pth
ResNet-50 (Res-50-p) Pytorch 91.8 resnet50-0676ba61.pth
ResNet-50 (Res-50-t) timm 94.6 resnet50_a1_0-14fe96d1.pth
ResNet-152 (Res-152-p) Pytorch 93.6 resnet152-394f9c45.pth
ResNet-152 (Res-152-t) timm 95.4 resnet152_a1h-dc400468.pth
VGG-16 (Vgg-16-p) Pytorch 85.5 vgg16-397923af.pth
VGG-16 (Vgg-16-t) timm 84.2 vgg16-397923af.pth
VGG-19 (Vgg-19-p) Pytorch 87.5 vgg19-dcbb9e9d.pth
VGG-19 (Vgg-19-t) timm 85.2 vgg19-dcbb9e9d.pth
DenseNet-121 (Den-121-p) Pytorch 92.3 densenet121-a639ec97.pth
DenseNet-121 (Den-121-t) timm 93.2 densenet121_ra-50efcf5c.pth
DenseNet-169 (Den-169-p) Pytorch 94.1 densenet169-b2777c0a.pth
DenseNet-169 (Den-169-t) timm 94.1 densenet169-b2777c0a.pth
Adv-Inception-v3 (Adv-Inc-v3-t) timm 86.9 adv_inception_v3-9e27bd63.pth
Ens-Adv-Inception-ResNet-v2 (Ens-IncRes-v2-t) timm 94.5 ens_adv_inception_resnet_v2-2592a550.pth

ImageNette

Models Packages Accuracy (%) Weights
Inception-v3 Pytorch 99.6 pytorch_inception_v3_imagenette.pth
Inception-v4 timm 99.6 timm_inception_v4_imagenette.pth
Inception-ResNet-v2 timm 99.7 timm_inception_resnet_v2_imagenette.pth
ResNet-50 Pytorch 99.4 pytorch_resnet_50_imagenette.pth
ResNet-152 Pytorch 99.7 pytorch_resnet_152_imagenette.pth
VGG-16 Pytorch 99.0 pytorch_vgg_16_imagenette.pth
VGG-19 Pytorch 98.7 pytorch_vgg_19_imagenette.pth
DenseNet-121 Pytorch 98.9 pytorch_densenet_121_imagenette.pth
DenseNet-169 Pytorch 99.2 pytorch_densenet_169_imagenette.pth

BFA

python eval.py --ds=nips2017 --model=inception_v3 --pkg=pytorch --bs=32 --attack=BFA

Citation

If you find the idea or code useful for your research, please consider citing our paper:

@article{wang2024improving,
  title={Improving the transferability of adversarial examples through black-box feature attacks},
  author={Wang, Maoyuan and Wang, Jinwei and Ma, Bin and Luo, Xiangyang},
  journal={Neurocomputing},
  pages={127863},
  year={2024},
  publisher={Elsevier}
}

About

The official code for the paper `Improving the transferability of adversarial examples through black-box feature attacks`.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages