Skip to content

Knowledge-infused Contrastive Learning for Urban Imagery-based Socioeconomic Prediction

Notifications You must be signed in to change notification settings

tsinghua-fib-lab/UrbanKG-KnowCL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge-infused Contrastive Learning for Urban Imagery-based Socioeconomic Prediction

"The Main Framework of KnowCL Model"

Dataset

Here we provide the dataset of New York for reproducibility, and the image data can be downloaded from here.

After downloading the data, copy "zl15_224" into "./data/satellite_image/" folder and copy "Region" into "./data/streetview_image/" folder.

Running a model

To run the contrastive learning model for satellite imagery at Step 1, execute the following command:

CUDA_VISIBLE_DEVICES=0 python main.py --dataset new_york --model_name Pair_CLIP_SI --n_gcn_layer 2 --lr 0.0003 --batch_size 128

To run the contrastive learning model for street view imagery at Step 1, execute the following command:

CUDA_VISIBLE_DEVICES=0 python main.py --dataset new_york --model_name Pair_CLIP_SV --n_gcn_layer 2 --lr 0.0003 --batch_size 16

To reproduce the population prediction results, execute the following commands:

CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator pop --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.001  --drop_out 0.3 --wd 1.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator pop --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.005  --drop_out 0.1 --wd 0.0

To reproduce the education prediction results, execute the following commands:

CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator edu --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.001  --drop_out 0.3 --wd 1.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator edu --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.001  --drop_out 0.5 --wd 0.1

To reproduce the crime prediction results, execute the following commands:

CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator crime --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.0005  --drop_out 0.5 --wd 0.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator crime --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.001 --drop_out 0.1 --wd 0.0

Requirements

dgl==1.0.0
dgl_cu102==0.6.1
numpy==1.21.6
pandas==1.3.5
Pillow==9.4.0
scikit_learn==1.2.1
torch==1.9.0+cu111
torchvision==0.10.0+cu111
tqdm==4.64.1
python==3.7.13

Reference

@inproceddings{liu2023knowcl,
title 	  = {Knowledge-infused Contrastive Learning for Urban Imagery-based Socioeconomic Prediction},
author	  = {Liu, Yu and Zhang, Xin and Ding, Jingtao and Xi, Yanxin and Li, Yong},
booktitle = {The Web Conference},
year      = {2023}}

Releases

No releases published

Packages

No packages published

Languages