Skip to content

vectara/python-sdk

Repository files navigation

Vectara Python SDK

fern shield pypi

The Vectara Python SDK provides convenient access to the Vectara API for building powerful AI applications.


Installation

Install the library via pip:

pip install vectara

Getting Started

API Generated Documentation

API reference documentation is available here.

Examples

Complete examples can be found in the Getting Started notebooks.

Usage

First, create an SDK client.
You can use either an api_key or OAuth (client_id and client_secret) for authentication.

from vectara import Vectara

# creating the client using API key
client = Vectara(
    api_key="YOUR_API_KEY"
)
    
# creating the client using oauth credentials
client = Vectara(
    client_id="YOUR_CLIENT_ID",
    client_secret="YOUR_CLIENT_SECRET",
)  

If you don't already have a corpus, you can create it using the SDK:

client.corpora.create(name="my-corpus", key="my-corpus-key")

Add a document to a corpus

You can add documents to a corpus in two formats: structured or core.
For more information, refer to the Indexing Guide.

Here is an example for adding a Structured document

from vectara import StructuredDocument, StructuredDocumentSection
client.documents.create(
    corpus_key="my-corpus-key",
    request=StructuredDocument(
        id="my-doc-id",
        type="structured",
        sections=[
          StructuredDocumentSection(
              id="id_1",
              title="A nice title.",
              text="I'm a nice document section.",
              metadata={'section': '1.1'}
          ),
          StructuredDocumentSection(
              id="id_2",
              title="Another nice title.",
              text="I'm another document section on something else.",
              metadata={'section': '1.2'}
          ),
        ],
        metadata={'url': 'https://example.com'}
    ),
)

And here is one with Core document:

from vectara import CoreDocument, CoreDocumentPart

client.documents.create(
    corpus_key="my-corpus-key",
    request=CoreDocument(
        id="my-doc-id",
        type="core",
        document_parts=[
            CoreDocumentPart(
                text="I'm a first document part.",
                metadata={'author': 'Ofer'}
            )
            CoreDocumentPart(
                text="I'm a second document part.",
                metadata={'author': 'Adeel'}
            )
        ],
        metadata={'url': 'https://example.com'}
    ),
)

Upload a file to the corpus

In addition to creating a document as shown above (using StructuredDocument or CoreDocument), you can also upload files (such as PDFs or Word Documents) directly to Vectara. In this case Vectara will parse the files automatically, extract text and metadata, chunk them and add them to the corpus.

Using the SDK you need to provide both the file name, the binary content of the file, and the content_type, as follows:

filename = "examples.pdf"
with open(filename, "rb") as f:
    content = f.read()

client.upload.file(
    'my-corpus-key', 
    file=content,
    filename=filename,
    metadata={"author": "Adeel"}
)

Querying the corpora

With the SDK it's super easy to run a query from one or more corpora. For more detailed information, see this Query API guide

A query uses two important objects:

  • The SearchCorporaParameters object defines parameters for search such as hybrid search, metadata filtering or reranking
  • The GenerationParameters object defines parameters for the generative step.

Here is an example query for our corpus above:

search = SearchCorporaParameters(
        corpora=[
            KeyedSearchCorpus(
                corpus_key="my-corpus-key",
                metadata_filter="",
                lexical_interpolation=0.005,
            )
        ],
        context_configuration=ContextConfiguration(
            sentences_before=2,
            sentences_after=2,
        ),
        reranker=CustomerSpecificReranker(
            reranker_id="rnk_272725719"
        ),
    )
generation = GenerationParameters(
        response_language="eng",
        enable_factual_consistency_score=True,
    )

client.query(
    query="Am I allowed to bring pets to work?",
    search=search,
    generation=generation
    
)

Using Chat

Vectara chat provides a way to automatically store chat history to support multi-turn conversations.

Here is an example of how to start a chat with the SDK:

from vectara import SearchCorporaParameters    
search = SearchCorporaParameters(
        corpora=[
            KeyedSearchCorpus(
                corpus_key="test-corpus",
                metadata_filter="",
                lexical_interpolation=0.005,
            )
        ],
        context_configuration=ContextConfiguration(
            sentences_before=2,
            sentences_after=2,
        ),
        reranker=CustomerSpecificReranker(
            reranker_id="rnk_272725719"
        ),
    )
generation = GenerationParameters(
        response_language="eng",
        citations=CitationParameters(
            style="none",
        ),
        enable_factual_consistency_score=True,
    )
chat = ChatParameters(store=True)

session = client.create_chat_session(
    search=search,
    generation=generation,
    chat_config=chat,
)

response_1 = session.chat(query="Tell me about machine learning.")
print(response_1.answer)
response_2 = session.chat(query="what is generative AI?")
print(response_2.answer)

Note that we used the create_chat_session with chat_config set for storing chat history. The resulting session can then be used for turn-by-turn chat, simply by using the chat() method of the session object.

Streaming

The SDK supports streaming responses for both query and chat. When using streaming, the response will be a generator that you can iterate.

Here's an example of calling query_stream:

Streaming the query response

from vectara import SearchCorporaParameters
search = SearchCorporaParameters(
    corpora=[...],
    ...
)
generation = GenerationParameters(...)

response = client.query_stream(
    query="Am I allowed to bring pets to work?",
    search=search,
    generation=generation
    
)
for chunk in response:
    if chunk.type == 'generation_chunk':
        print(chunk.generation_chunk)
    if chunk.type == "search_results":
        print(chunk.search_results)

And streaming the chat response:

from vectara import SearchCorporaParameters

search = SearchCorporaParameters(
    corpora=[...],
    ...
)
generation = GenerationParameters(...)
chat_params = ChatParameters(store=True)

session = client.create_chat_session(
    search=search_params,
    generation=generation_params,
    chat_config=chat_params,
)

response = session.chat_stream(query="Tell me about machine learning.")
for chunk in response:
    if chunk.type == 'generation_chunk':
        print(chunk.generation_chunk)
    if chunk.type == "search_results":
        print(chunk.search_results)   
    if chunk.type == "chat_info":
        print(chunk.chat_id)
        print(chunk.turn_id)

Additional Functionality

There is a lot more functionality packed into the SDK, matching all API endpoints that are available in Vectara including for things like managing documents, corpora, api keys, users, and even for query history retrieval.

Exception Handling

When the API returns a non-success status code (4xx or 5xx response), a subclass of the following error will be thrown.

from vectara.core.api_error import ApiError

try:
    client.query(...)
except ApiError as e:
    print(e.status_code)
    print(e.body)

Pagination

Paginated requests will return a SyncPager or AsyncPager, which can be used as generators for the underlying object.

response = client.corpora.list(
    limit=1,
)
for item in response:
    yield item
# alternatively, you can paginate page-by-page
for page in response.iter_pages():
    yield page

Advance Usage

For more information related to customization, Timeouts and Retries in the SDK, refer to the Advanced Usage Guide

Using the SDK in Different Contexts

The Python library can be used in a number of environments with different requirements:

  1. Notebooks - using implicit configuration from a users home directory
  2. Docker Environments - using ENV variables for configuration
  3. Complex Applications - allowing explicit configuration from mutable stores (e.g. RDBMS / NoSQL)

For more details, refer to the Configuration Guide

Author

👤 Vectara

🤝 Contributing

Contributions, issues and feature requests are welcome!
Feel free to check issues page. You can also take a look at the contributing guide.

Show your support

Give a ⭐️ if this project helped you!

About

A Python SDK for accessing the Vectara API

Topics

Resources

Stars

Watchers

Forks

Languages