Skip to content

Commit

Permalink
transition to get_prior, make_stancode and make_standata
Browse files Browse the repository at this point in the history
  • Loading branch information
venpopov committed Feb 29, 2024
1 parent bcb9d7e commit 1d449fc
Show file tree
Hide file tree
Showing 15 changed files with 309 additions and 151 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: bmm
Title: Easy and Accesible Bayesian Measurement Models using 'brms'
Version: 0.4.0.9000
Version: 0.4.1.9000
Authors@R: c(
person("Vencislav", "Popov", , "[email protected]", role = c("aut", "cre", "cph")),
person("Gidon", "Frischkorn", , "[email protected]", role = c("aut", "cph")),
Expand Down
5 changes: 4 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,9 @@
S3method("+",bmmformula)
S3method("[",bmmformula)
S3method(bmf2bf,bmmmodel)
S3method(brms::get_prior,bmmformula)
S3method(brms::make_stancode,bmmformula)
S3method(brms::make_standata,bmmformula)
S3method(check_data,IMMspatial)
S3method(check_data,bmmmodel)
S3method(check_data,default)
Expand Down Expand Up @@ -58,9 +61,9 @@ export(fit_info)
export(fit_model)
export(get_model_prior)
export(get_stancode)
export(get_stancode_parblock)
export(get_standata)
export(k2sd)
export(make_stancode_parblock)
export(mixture2p)
export(mixture3p)
export(pIMM)
Expand Down
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
# bmm 0.4.0+

### New features
* deprecate get_model_prior(), get_stancode() and get_standata(). These functions will be removed in future versions of the package. If you are using *brms* version 2.20.14 or later, you can now use the *brms* functions `get_prior`, `make_stancode` and `make_standata` directly with *bmm* models.

# bmm 0.4.0

### New features
Expand Down
49 changes: 30 additions & 19 deletions R/helpers-data.R
Original file line number Diff line number Diff line change
Expand Up @@ -230,20 +230,14 @@ rad2deg <- function(rad){
#' with `bmm`. Given the `model`, the `data` and the `formula` for the model,
#' this function will return the combined stan data generated by `bmm` and
#' `brms`
#' @param formula An object of class `brmsformula`. A symbolic description of
#' the model to be fitted.
#' @param data An object of class data.frame, containing data of all variables
#' used in the model. The names of the variables must match the variable names
#' passed to the `bmmmodel` object for required argurments.
#' @param model A description of the model to be fitted. This is a call to a
#' `bmmmodel` such as `mixture3p()` function. Every model function has a
#' number of required arguments which need to be specified within the function
#' call. Call [supported_models()] to see the list of supported models and
#' their required arguments
#' @param prior One or more `brmsprior` objects created by [brms::set_prior()]
#' or related functions and combined using the c method or the + operator. See
#' also [get_model_prior()] for more help. Not necessary for the default model
#' fitting, but you can provide prior constraints to model parameters
#'
#' If you are using *brms* version 2.20.14 or later, you can use
#' [make_standata()] directly with the `bmmformula` object. If you are using
#' an older version of *brms*, you have to use [get_standata()] to obtain the
#' default priors. The usage of [get_standata()] is deprecated and will be
#' removed in future versions of *bmm*.
#'
#' @inheritParams fit_model
#' @param ... Further arguments passed to [brms::make_standata()]. See the
#' description of [brms::make_standata()] for more details
#'
Expand All @@ -266,15 +260,32 @@ rad2deg <- function(rad){
#' ff <- bmf(c ~ 1,
#' kappa ~ 1)
#'
#' # fit the model
#' get_standata(formula = ff,
#' data = dat,
#' model = sdmSimple(resp_err = "y")
#' )
#'
#' if (utils::packageVersion('brms') >= "2.20.14") {
#' # generate the stan data (if using brms version 2.20.14 or later)
#' make_standata(formula = ff,
#' data = dat,
#' model = sdmSimple(resp_err = "y"))
#' } else {
#' # generate the stan data (if using an older version of brms)
#' get_standata(formula = ff,
#' data = dat,
#' model = sdmSimple(resp_err = "y"))
#' }
#' }
#'
get_standata <- function(formula, data, model, prior=NULL, ...) {
if (utils::packageVersion('brms') >= "2.20.14") {
message("get_standata is deprecated. Please use make_standata() instead.")
return(brms::make_standata(formula = formula, data = data,
model = model, prior = prior, ...))
}
make_standata.bmmformula(formula = formula, data = data,
model = model, prior = prior, ...)
}

#' @rdname get_standata
make_standata.bmmformula <- function(formula, data, model, prior = NULL, ...) {
# check model, formula and data, and transform data if necessary
model <- check_model(model, data)
data <- check_data(model, data, formula)
Expand Down
70 changes: 31 additions & 39 deletions R/helpers-model.R
Original file line number Diff line number Diff line change
Expand Up @@ -605,36 +605,27 @@ use_model_template <- function(model_name,


#' @title Generate Stan code for bmm models
#' @description A wrapper around `brms::make_stancode()` for models specified with
#' `bmm`. Given the `model`, the `data` and the `formula` for the model, this
#' function will return the combined stan code generated by `bmm` and `brms`
#' @param formula An object of class `bmmformula`. A symbolic description of
#' the model to be fitted.
#' @param data An object of class data.frame, containing data of all variables
#' used in the model. The names of the variables must match the variable names
#' passed to the `bmmmodel` object for required argurments.
#' @param model A description of the model to be fitted. This is a call to a
#' `bmmmodel` such as `mixture3p()` function. Every model function has a
#' number of required arguments which need to be specified within the function
#' call. Call [supported_models()] to see the list of supported models and
#' their required arguments
#' @param prior One or more `brmsprior` objects created by [brms::set_prior()]
#' or related functions and combined using the c method or the + operator. See
#' also [get_model_prior()] for more help. Not necessary for the default model
#' fitting, but you can provide prior constraints to model parameters
#' @description A wrapper around `brms::make_stancode()` for models specified
#' with `bmm`. Given the `model`, the `data` and the `formula` for the model,
#' this function will return the combined stan code generated by `bmm` and
#' `brms`
#'
#' If you are using *brms* version 2.20.14 or later, you should use
#' [make_stancode()] directly with the `bmmformula` object. If you are using
#' an older version of *brms*, you have to use [get_stancode()] to obtain the
#' default priors. The usage of [get_stancode()] is deprecated and will be
#' removed in future versions of *bmm*.
#'
#' @inheritParams fit_model
#' @param ... Further arguments passed to [brms::make_stancode()]. See the
#' description of [brms::make_stancode()] for more details
#'
#' @returns A character string containing the fully commented Stan code to fit a
#' bmm model.
#'
#'
#' @seealso [supported_models()], [brms::make_stancode()]
#'
#' @export
#'
#' @keywords extract_info
#'
#' @examples
#' \dontrun{
#' # generate artificial data from the Signal Discrimination Model
Expand All @@ -644,15 +635,29 @@ use_model_template <- function(model_name,
#' ff <- bmmformula(c ~ 1,
#' kappa ~ 1)
#'
#' # fit the model
#' # generate the Stan code (if you are using brms version 2.20.14 or later)
#' make_stancode(formula = ff,
#' data = dat,
#' model = sdmSimple(resp_err = "y"))
#'
#' # generate the Stan code (if you are using an older version of brms)
#' get_stancode(formula = ff,
#' data = dat,
#' model = sdmSimple(resp_err = "y")
#' )
#' model = sdmSimple(resp_err = "y"))
#' }
#'
get_stancode <- function(formula, data, model, prior=NULL, ...) {
if (utils::packageVersion('brms') >= "2.20.14") {
message("get_stancode is deprecated. Please use make_stancode() instead.")
return(brms::make_stancode(formula = formula, data = data,
model = model, prior = prior, ...))
}
make_stancode.bmmformula(formula = formula, data = data,
model = model, prior = prior, ...)
}

#' @rdname get_stancode
make_stancode.bmmformula <- function(formula, data, model, prior=NULL, ...) {
# check model, formula and data, and transform data if necessary
model <- check_model(model,data)
data <- check_data(model, data, formula)
Expand All @@ -677,20 +682,7 @@ get_stancode <- function(formula, data, model, prior=NULL, ...) {
#' `bmm`. Given the `model`, the `data` and the `formula` for the model, this
#' function will return just the parameters block. Useful for figuring out
#' which paramters you can set initial values on
#' @param formula An object of class `bmmformula`. A symbolic description of
#' the model to be fitted.
#' @param data An object of class data.frame, containing data of all variables
#' used in the model. The names of the variables must match the variable names
#' passed to the `bmmmodel` object for required argurments.
#' @param model A description of the model to be fitted. This is a call to a
#' `bmmmodel` such as `mixture3p()` function. Every model function has a
#' number of required arguments which need to be specified within the function
#' call. Call [supported_models()] to see the list of supported models and
#' their required arguments
#' @param prior One or more `brmsprior` objects created by [brms::set_prior()]
#' or related functions and combined using the c method or the + operator. See
#' also [get_model_prior()] for more help. Not necessary for the default model
#' fitting, but you can provide prior constraints to model parameters
#' @inheritParams fit_model
#' @param ... Further arguments passed to [brms::make_stancode()]. See the
#' description of [brms::make_stancode()] for more details
#'
Expand All @@ -703,7 +695,7 @@ get_stancode <- function(formula, data, model, prior=NULL, ...) {
#' @seealso [supported_models()], [get_stancode()]
#'
#' @export
get_stancode_parblock <- function(formula, data, model, prior=NULL, ...) {
make_stancode_parblock <- function(formula, data, model, prior=NULL, ...) {
stancode <- get_stancode(formula, data, model, prior, ...)
.extract_parblock(stancode)
}
Expand Down
101 changes: 60 additions & 41 deletions R/helpers-prior.R
Original file line number Diff line number Diff line change
@@ -1,45 +1,34 @@
# internal function to combine two priors (e.g. the default prior with the user given prior)
# parts present in prior2 will overwrite the corresponding parts in prior1
combine_prior <- function(prior1, prior2) {
if (!is.null(prior2)) {
combined_prior <- dplyr::anti_join(prior1, prior2, by=c('class', 'dpar','nlpar','coef','group','resp'))
prior <- combined_prior + prior2
} else {
prior <- prior1
}
return(prior)
}


#' @title Get Default priors for Measurement Models specified in BRMS
#' @description Obtain the default priors for a Bayesian multilevel measurement model,
#' as well as information for which parameters priors can be specified.
#' Given the `model`, the `data` and the `formula` for the model, this function will return
#' the default priors that would be used to estimate the model. Additionally, it will
#' return all model parameters that have no prior specified (flat priors). This can help to
#' get an idea about which priors need to be specified and also know which priors were
#' used if no user-specified priors were passed to the [fit_model()] function.
#' @param formula An object of class `bmmformula`. A symbolic description of
#' the model to be fitted.
#' @param data An object of class data.frame, containing data of all variables
#' used in the model. The names of the variables must match the variable names
#' passed to the `bmmmodel` object for required argurments.
#' @param model A description of the model to be fitted. This is a call to a
#' `bmmmodel` such as `mixture3p()` function. Every model function has a
#' number of required arguments which need to be specified within the function
#' call. Call [supported_models()] to see the list of supported models and
#' their required arguments
#' @title Get Default priors for Measurement Models specified in BMM
#' @description Obtain the default priors for a Bayesian multilevel measurement
#' model, as well as information for which parameters priors can be specified.
#' Given the `model`, the `data` and the `formula` for the model, this
#' function will return the default priors that would be used to estimate the
#' model. Additionally, it will return all model parameters that have no prior
#' specified (flat priors). This can help to get an idea about which priors
#' need to be specified and also know which priors were used if no
#' user-specified priors were passed to the [fit_model()] function.
#'
#' If you are using *brms* version 2.20.14 or later, you should use
#' [get_prior][brms::get_prior()] directly with the `bmmformula` object. If you are using an
#' older version of *brms*, you have to use [get_model_prior()] to obtain the
#' default priors. The usage of [get_model_prior()] is deprecated and will be
#' removed in future versions of *bmm*.
#'
#'
#' @inheritParams fit_model
#' @param ... Further arguments passed to [brms::get_prior()]. See the
#' description of [brms::get_prior()] for more details
#'
#' @details `r a= supported_models(); a`
#'
#' Type `help(package=bmm)` for a full list of available help topics.
#'
#' @returns A data.frame with columns specifying the `prior`, the `class`, the `coef` and `group`
#' for each of the priors specified. Separate rows contain the information on the
#' parameters (or parameter classes) for which priors can be specified.
#' @returns A data.frame with columns specifying the `prior`, the `class`, the
#' `coef` and `group` for each of the priors specified. Separate rows contain
#' the information on the parameters (or parameter classes) for which priors
#' can be specified.
#'
#' @name get_model_prior
#'
#' @seealso [supported_models()], [brms::get_prior()]
#'
Expand All @@ -57,14 +46,32 @@ combine_prior <- function(prior1, prior2) {
#' c ~ 1,
#' kappa ~ 1)
#'
#' # fit the model
#' get_model_prior(formula = ff,
#' data = dat,
#' model = sdmSimple()
#' )
#' }
#'
#' if (utils::packageVersion('brms') >= "2.20.14") {
#' # extract the default bmm prior (if using brms version 2.20.14 or later)
#' get_prior(formula = ff,
#' data = dat,
#' model = sdmSimple())
#' } else {
#' # (if using an older version of brms)
#' get_model_prior(formula = ff,
#' data = dat,
#' model = sdmSimple())
#' }
#' }
#' @export
get_model_prior <- function(formula, data, model, ...) {
if (utils::packageVersion('brms') >= "2.20.14") {
message("get_model_prior is deprecated. Please use get_prior() instead.")
return(brms::get_prior(formula = formula, data = data, model = model, ...))
}
get_prior.bmmformula(formula = formula, data = data, model = model, ...)
}



#' @rdname get_model_prior
get_prior.bmmformula <- function(formula, data, model, ...) {
model <- check_model(model, data)
data <- check_data(model, data, formula)
formula <- check_formula(model, data, formula)
Expand All @@ -77,7 +84,6 @@ get_model_prior <- function(formula, data, model, ...) {
combine_prior(brms_priors, prior_args$prior)
}


#' @title construct constant priors to fix fixed model parameters
#' @param model a `bmmmodel` object
#' @param additional_pars a list of name=value pairs to fix additional
Expand Down Expand Up @@ -233,3 +239,16 @@ set_default_prior <- function(bmmformula, data, prior_list) {
}
prior
}


# internal function to combine two priors (e.g. the default prior with the user given prior)
# parts present in prior2 will overwrite the corresponding parts in prior1
combine_prior <- function(prior1, prior2) {
if (!is.null(prior2)) {
combined_prior <- dplyr::anti_join(prior1, prior2, by=c('class', 'dpar','nlpar','coef','group','resp'))
prior <- combined_prior + prior2
} else {
prior <- prior1
}
return(prior)
}
6 changes: 6 additions & 0 deletions R/zzz.R
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
.onLoad <- function(libname, pkgname) {
suppressMessages(bmm_options(reset_options = TRUE))

if (utils::packageVersion('brms') >= "2.20.14") {
#' @exportS3Method brms::get_prior bmmformula
#' @exportS3Method brms::make_standata bmmformula
#' @exportS3Method brms::make_stancode bmmformula
}
}

.onAttach <- function(libname, pkgname) {
Expand Down
2 changes: 1 addition & 1 deletion man/bmm-package.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 1d449fc

Please sign in to comment.