in this repo u can look at default template for ds/ml/dl/.. projects or similar
-
before creating a new project from this template, u need to install the next dependencies
-
pip install cookiecutter
-
look at the linux installation instructions
-
-
after go to the directory where u want to create your project and run
cookiecutter gh:vvssttkk/dst
-
follow the instruction
├── .github/ <- some actions
│ ├── workflows/
│ │ ├── ci.yml
│ │ └── dependency-review.yml
│ └── dependabot.yml
│
├── config/ <- often it's yaml-files with some parameters
│
├── data/
│ ├── external/ <- data from third party sources
│ ├── interim/ <- intermediate data that has been transformed
│ ├── processed/ <- the final, canonical data sets for modeling
│ ├── raw/ <- the original, immutable data dump
│ ├── features/ <- another
│ └── README.md
│
├── docs/ <- a default sphinx project (see sphinx-doc.org for details)
│
├── experiments/ <- for any experiments
│ └── README.md
│
├── models/ <- trained & serialized models, model predictions, or model summaries
│ └── README.md
│
├── notebooks/ <- notebooks for research naming convention is a number (for ordering), the creator's initials,
│ and a short `-` delimited description, eg `1.0-jqp-initial-data-exploration`
│
├── references/ <- data dictionaries, manuals, and all other explanatory materials
│ └── README.md
│
├── tests/ <- test for project
│ └── __init__.py
│
├── {{ cookiecutter.project_name }}/ <- source code
│ ├── __init__.py <- propose generate with `mkinit`
│ ├── data/ <- scripts to download or generate data
│ ├── models/ <- scripts to train models and then use trained models to make predictions
│ └── visualization/ <- scripts to create exploratory and results oriented visualizations
│
├── .gitignore <- default for python
├── .pre-commit-config.yaml <- custom pcc with `reorder_python_imports`, `black`, `flake8`, `pyright`, `mypy`, `pre-commit-hooks`..
├── LICENSE <- will be created if u choose
├── README.md
└── requirements.txt <- propose generate with `pipreqs`
- gh – github on the terminal
- dvc – open-source version control system for ds projects
- cml – continuous machine learning | ci/cd for ml/dl
- renovate - yet another dependency management
- hydra – to configuring complex applications
- pipreqs – autogenerate pip requirements
- pre-commit – framework for managing & maintaining multi-language pre-commit hooks
- code style/review/formatter/typer
- awesome-python-typing
- codefactor
- snyk
- deepsource
- prettier
- pycodestyle
- pyre-check
- pyright
- restyled (autopep8, black, isort, prettier-markdown, reorder-python-imports, yapf)
- super-linter (pylint, flake8, awesome-flake8-extensions, black)
- yapf
- pyupgrade
- vulture
- tests
- profiler/debugger
- spellcheckers