Skip to content

Commit

Permalink
Removed plot_collar_voltage function from ecoscope.plotting module
Browse files Browse the repository at this point in the history
  • Loading branch information
insaite committed Nov 16, 2023
1 parent 4b8908e commit 8e966b9
Showing 1 changed file with 0 additions and 149 deletions.
149 changes: 0 additions & 149 deletions ecoscope/plotting/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -286,155 +286,6 @@ def speed(trajectory):
return fig


def plot_collar_voltage(
relocations,
start_time,
extract_fn=extract_voltage,
output_folder=None,
layout_kwargs=None,
hline_kwargs=None,
):
# @TODO Complete black-box re-write
assigned_range = (
relocations["extra__subjectsource__assigned_range"]
.apply(pd.Series)
.add_prefix("extra.extra.subjectsource__assigned_range.")
)
relocations = relocations.merge(assigned_range, right_index=True, left_index=True)

groups = relocations.groupby(by=["extra__subject__id", "extra__subjectsource__id"])

for group, dataframe in groups:
subject_name = relocations.loc[relocations["extra__subject__id"] == group[0]]["extra__subject__name"].unique()[
0
]

dataframe["extra__subjectsource__assigned_range__upper"] = pd.to_datetime(
dataframe["extra__subjectsource__assigned_range"].str["upper"],
errors="coerce",
)
subjectsource_upperbound = dataframe["extra__subjectsource__assigned_range__upper"].unique()

is_source_active = subjectsource_upperbound >= start_time or pd.isna(subjectsource_upperbound)[0]
if is_source_active:
logger.info(subject_name)

dataframe = dataframe.sort_values(by=["fixtime"])
dataframe["voltage"] = np.array(dataframe.apply(extract_fn, axis=1), dtype=np.float64)

time = dataframe[dataframe.fixtime >= start_time].fixtime.tolist()
voltage = dataframe[dataframe.fixtime >= start_time].voltage.tolist()

# Calculate the historic voltage
hist_voltage = dataframe[dataframe.fixtime <= start_time].voltage.tolist()
if hist_voltage:
volt_upper, volt_lower = np.nanpercentile(hist_voltage, [97.5, 2.5])
hist_voltage_mean = np.nanmean(hist_voltage)
else:
volt_upper, volt_lower = np.nan, np.nan
hist_voltage_mean = None
volt_diff = volt_upper - volt_lower
volt_upper = np.full((len(time)), volt_upper, dtype=np.float32)
volt_lower = np.full((len(time)), volt_lower, dtype=np.float32)

if np.all(volt_diff == 0):
# jitter = np.random.random_sample((len(volt_upper,)))
volt_upper = volt_upper + 0.025 * max(volt_upper)
volt_lower = volt_lower - 0.025 * max(volt_lower)

if not any(hist_voltage or voltage):
continue

try:
lower_y = min(np.nanmin(np.array(hist_voltage)), np.nanmin(np.array(voltage)))
upper_y = max(np.nanmax(np.array(hist_voltage)), np.nanmax(np.array(voltage)))
except ValueError:
lower_y = min(hist_voltage or voltage)
upper_y = max(hist_voltage or voltage)
finally:
lower_y = lower_y - 0.1 * lower_y
upper_y = upper_y + 0.1 * upper_y

if not len(voltage):
continue

if not layout_kwargs:
layout = go.Layout(
xaxis={"title": "Time"},
yaxis={"title": "Collar Voltage"},
margin={"l": 40, "b": 40, "t": 50, "r": 50},
hovermode="closest",
)
else:
layout = go.Layout(**layout_kwargs)

# Add the current voltage
trace = go.Scatter(
x=time,
y=voltage,
fill=None,
showlegend=True,
mode="lines",
line={
"width": 1,
"shape": "spline",
},
line_color="rgb(0,0,246)",
marker={
"colorscale": "Viridis",
"color": voltage,
"colorbar": dict(title="Colorbar"),
"cmax": np.max(voltage),
"cmin": np.min(voltage),
},
name=subject_name,
)

# Add the historical lower HPD value
trace_lower = go.Scatter(
x=time,
y=volt_lower,
fill=None,
line_color="rgba(255,255,255,0)",
mode="lines",
showlegend=False,
)

# Add the historical max HPD value
trace_upper = go.Scatter(
x=time,
y=volt_upper,
fill="tonexty", # fill area between trace0 and trace1
mode="lines",
fillcolor="rgba(0,176,246,0.2)",
line_color="rgba(255,255,255,0)",
showlegend=True,
name="Historic 2.5% - 97.5%",
)

fig = go.Figure(layout=layout)
fig.add_trace(trace_lower)
fig.add_trace(trace_upper)
fig.add_trace(trace)
if hist_voltage_mean:
if not hline_kwargs:
fig.add_hline(
y=hist_voltage_mean,
line_dash="dot",
line_width=1.5,
line_color="Red",
annotation_text="Historic Mean",
annotation_position="right",
)
else:
fig.add_hline(**hline_kwargs)
fig.update_layout(yaxis=dict(range=[lower_y, upper_y]))
if output_folder:
fig.write_image(os.path.join(f"{output_folder}/_{group}_{str(uuid.uuid4())[:4]}.png"))
else:
fig.show()


def plot_seasonal_dist(ndvi_vals, cuts, bandwidth=0.05, output_file=None):
x = ndvi_vals.sort_values().to_numpy().reshape(-1, 1)
kde = KernelDensity(kernel="gaussian", bandwidth=bandwidth).fit(x)
Expand Down

0 comments on commit 8e966b9

Please sign in to comment.