-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
331 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
#import "../../template.typ": * | ||
// Take a look at the file `template.typ` in the file panel | ||
// to customize this template and discover how it works. | ||
#show: note.with( | ||
title: "作业8", | ||
author: "YHTQ", | ||
date: none, | ||
logo: none, | ||
withOutlined : false, | ||
withTitle : false, | ||
withHeadingNumbering: false | ||
) | ||
= p247 | ||
== 1 | ||
不妨假设 $f$ 在 $(x_1, x_2)$ 上恒正,有: | ||
$ | ||
f'(x_1) >= 0, f'(x_2) <= 0 | ||
$ | ||
假设 $g(x)$ 在 $(x_1, x_2)$ 上无零点,不妨设其恒正。令: | ||
$ | ||
W(x) = Det(f, g;f', g') = f g' - f' g\ | ||
W'(x) = Det(f, g;f'', g'') = Det(f, g;-p(x)f' - q(x) f, -p(x) g' - r(x) g)\ | ||
=Det(f, g;-p(x)f', -p(x) g' - (r(x) - p(x)) g)\ | ||
= - p(x) W(x) - f g (r(x) - p(x)) | ||
$ | ||
注意到一定有: | ||
$ | ||
f g(r(x) - p(x)) > 0 | ||
$ | ||
由一阶方程的比较定理,有: | ||
$ | ||
B e^(-p(x)) < W(x) < A e^(-p(x)) | ||
$ | ||
其中 $A e^(-p(x))$ 是: | ||
$ | ||
cases( | ||
W'(x) = -p(x) W(x), | ||
W(x_1) = - g(x_1) f'(x_1) | ||
) | ||
$ | ||
的解,而 $B e^(-p(x))$ 是: | ||
$ | ||
cases( | ||
W'(x) = -p(x) W(x), | ||
W(x_1) = - g(x_2) f'(x_2) | ||
) | ||
$ | ||
的解,然而不难发现 $- g(x_1) f'(x_1) <= 0, - g(x_2) f'(x_2) => 0$ 导致 $A <= 0, B >= 0$,这是荒谬的! | ||
== 2 | ||
考虑 $y'' + m y = 0$ 的解 $sin (sqrt(m) x)$ 由比较定理: $k/(sqrt(m)) pi$ 之间一定有 $phi$ 的解,因此 $phi$ 无限振动\ | ||
对于任何两个相邻零点 $x_1, x_2$: | ||
- 可以找到 $y'' + m y = 0$ 的解 $sin (sqrt(m) x - x_1)$,加强的比较定理给出 $x_2 in (x_1, x_2 + pi/sqrt(m))$ | ||
- 可以找到 $y'' + M y = 0$ 的解 $sin (sqrt(M) x - x_1)$,加强的比较定理给出 $pi/sqrt(M) in (x_1, x_2)$ | ||
证毕 | ||
== 3 | ||
注意到: | ||
$ | ||
(z/y)' = (z' y - z y') / y^2\ | ||
(z' y - z y')' = z'' y - z y'' = z q(x) y - z Q(x) y = (q(x) - Q(x)) z y < 0\ | ||
z' y - z y'|_(x = x_0) = 0 | ||
$ | ||
进而 $z' y - z y' < 0$,原式单调减少 | ||
== 7 | ||
由线性方程组结论,设 $u$ 是满足 $y(0) = a$ 的解,$v$ 是满足 $y(0) = 0$ 的非零解,则所有 $y(0) = a$ 的解恰为: | ||
$ | ||
u+ C v, forall C in RR | ||
$ | ||
进而满足给定初值的解就是要: | ||
$ | ||
u(1) + C v(1) = b | ||
$ | ||
只要 $v(1) != 0$ 方程就恰有唯一解,而若 $v(1) = 0$,由比较定理 $y'' = 0$ 的解 $y = 1$ 一定在 $[0, 1]$ 上有零点,这是荒谬的!(类似的,该方程的解至多一个零点) | ||
|
||
对于第二个结论,不妨设 $a > 0$,已经说明解至多一个零点,无妨设 $phi(x)$ 在 $(0, 1)$ 上恒正,因此 $phi''$ 也恒正,导函数单调增加。然而由 $(0, 1)$ 间恒正可得 $y'(1) < 0$(不能等于零,否则整个解为零),进而函数严格单调减少。 | ||
= p258 | ||
== 1 | ||
- 设 $lambda = - m^2$,则 $y'' + lambda y = 0$ 的通解为: | ||
$ | ||
linearCombinationC(e^(m x), e^(-m x)) | ||
$ | ||
代入初值: | ||
$ | ||
cases( | ||
C_1 + C_2 = 0, | ||
C_1 e^m + C_2 e^(-m) = 1 | ||
) | ||
$ | ||
只要 $m != 0$ 方程一定有解。若初值为 $(0, 0)$ 则无解 | ||
- 设 $lambda = m^2$,则 $y'' + lambda y = 0$ 的通解为: | ||
$ | ||
linearCombinationC(cos m x, sin m x) | ||
$ | ||
代入初值: | ||
$ | ||
cases( | ||
C_1 = 0, | ||
C_1 cos m + C_2 sin m = 1 | ||
) | ||
$ | ||
只要 $m != k pi$ 方程一定有解。若初值为 $(0, 0)$ 则除非 $m = k pi$ 方程无解 | ||
== 2 | ||
这是欧拉方程,令 $x = e^t$。计算: | ||
$ | ||
der(y, x) = der(y, t)der(t, x) = der(y, t) e^(-t)\ | ||
der(der(y, x), x) = der(der(y, x), t)der(t, x) = der( der(y, t) e^(-t), t) e^(-t) \ | ||
= ((dif^2 y)/(dif t^2) e^(-t) - der(y, t) e^(-t))e^(-t)\ | ||
x^2 der(der(y, x), x) = (dif^2 y)/(dif t^2) - der(y, t) | ||
$ | ||
代回方程得: | ||
$ | ||
cases( | ||
(y'' - y') - lambda y' + lambda y = 0, | ||
y(0) = 0, | ||
y(ln 2) = 0 | ||
) | ||
$ | ||
方程化为: | ||
$ | ||
y'' -(lambda + 1)y' + lambda y = 0 | ||
$ | ||
- $lambda != 1$ 时特征根分别为 $1, lambda$,通解为: | ||
$ | ||
linearCombinationC(e^x, e^(lambda x)) | ||
$ | ||
代入初值: | ||
$ | ||
cases( | ||
C_1 + C_2 = 0, | ||
2 C_1 + 2^lambda C_2 = 0 | ||
) | ||
$ | ||
有非零解当且仅当 $lambda = 1$ ,这是不可能的 | ||
- $lambda = 1$ 时通解为: | ||
$ | ||
linearCombinationC(x e^x, e^x) | ||
$ | ||
代入初值: | ||
$ | ||
cases( | ||
C_2 = 0, | ||
2 ln 2 C_1 + 2 C_2 = 0 | ||
) | ||
$ | ||
仍然无非零解 | ||
== 4 | ||
用常数变易法,假设 $u_1, u_2$ 是对应齐次方程的两个基解,设: | ||
$ | ||
y = linearCombinationC(u_1, u_2)\ | ||
y' = linearCombinationC(u'_1, u'_2) + C'_1 u_1 + C'_2 u_2\ | ||
$ | ||
设 $C'_1 u_1 + C'_2 u_2 = 0$,继续求导: | ||
$ | ||
y'' = linearCombinationC(u''_1, u''_2) + C'_1 u'_1 + C'_2 u'_2\ | ||
linearCombinationC(u''_1, u''_2) + C'_1 u'_1 + C'_2 u'_2 + (lambda r(x) +q(x)) linearCombinationC(u_1, u_2) = f(x)\ | ||
C'_1 u'_1 + C'_2 u'_2 = f(x) | ||
$ | ||
得到方程组: | ||
$ | ||
cases( | ||
C'_1 u_1 + C'_2 u_2 = 0, | ||
C'_1 u'_1 + C'_2 u'_2 = f(x) | ||
) | ||
$ | ||
解得: | ||
$ | ||
C'_2 (u_1 u'_2 - u'_1 u_2) = f(x) u_1\ | ||
C'_2 = (f(x) u_1) / (u_1 u'_2 - u'_1 u_2)\ | ||
C'_1 = (f(x) u_2) / (u'_1 u_2 - u_1 u'_2)\ | ||
C_2 = integral_(0)^(x) (f u_1) / (u_1 u'_2 - u'_1 u_2) + A_2\ | ||
C_1 = integral_(0)^(x) (f u_2) / (u'_1 u_2 - u_1 u'_2) + A_1 | ||
$ | ||
代入边值: | ||
$ | ||
cases( | ||
(C_1 (0) u_1 (0) + C_2 (0) u_2 (0)) cos alpha - (C_1 (0) u'_1 (0) + C_2 (0) u'_2 (0)) sin alpha = 0, | ||
(C_1 (1) u_1 (1) + C_2 (1) u_2 (1)) cos alpha - (C_1 (1) u'_1 (1) + C_2 (1) u'_2 (1)) sin alpha = 0 | ||
) | ||
$ | ||
观察发现,这是关于 $A_1, A_2$ 的非齐次线性方程组,系数矩阵为: | ||
$ | ||
mat(u_1 (0) cos alpha - u'_1 (0) sin alpha, u_2 (0) cos alpha - u'_2 (0) sin alpha; u_1 (1) cos alpha - u'_1 (1) sin alpha, u_2 (1) cos alpha - u'_2 (1) sin alpha) | ||
$ | ||
- 若其满秩,不难发现方程组有唯一解 | ||
- 否则,两行线性相关,不难得到齐次微分方程的特征函数,进而 $lambda$ 一定是特征值。此时不妨设 $u_1$ 是特征函数,方程化简为: | ||
$ | ||
cases( | ||
C_2 (0) u_2 (0) cos alpha - C_2 (0) u'_2 (0) sin alpha = 0, | ||
C_2 (1) u_2 (1) cos alpha - C_2 (1) u'_2 (1) sin alpha = 0 | ||
) | ||
$ | ||
断言 $u_2 (0) cos alpha - u'_2 (0) sin alpha != 0,u_2 (1) cos alpha - u'_2 (1) sin alpha != 0$ ,否则 $u_1, u_2$ 在 $0$ 或 $1$ 处线性相关,导致整个解线性相关,与无关假设矛盾!因此上式有解当且仅当 $C_2 (0) = C_2 (1)$ | ||
|
||
另一方面,令 $u_1 u'_2 - u'_1 u_2 = W(x)$,则有: | ||
$ | ||
W'(x) = u_1 u''_2 - u''_1 u_2 = (lambda r(x) + q(x)) (u_1 u_2 - u_1 u_2) = 0 | ||
$ | ||
表明 $W(x)$ 是常数,当然非零(否则 $u_1, u_2$ 相关),因此: | ||
$ | ||
C_2 (0) = C_2 (1) <=> integral_(0)^(1) (f u_1) / (u_1 u'_2 - u'_1 u_2) = 0 <=> integral_(0)^(1) f u_1 = 0 | ||
$ | ||
证毕 | ||
= | ||
== | ||
$ | ||
partialDer(z, x) - y / (x + 2y) partialDer(z, y) = 0\ | ||
(dif x)/(x + 2 y) + (dif y)/y = 0\ | ||
y' = - y/(x + 2 y)\ | ||
u = y /x \ | ||
y = x u\ | ||
y' = u + x u' = - u/(1 + 2 u)\ | ||
x u' + (2 u + 2 u^2)/(1 + 2 u) = 0\ | ||
1/x x' + (1 + 2 u)/(2 u + 2 u^2) = 0\ | ||
1/x dif x + (1 + 2 u)/(2 u + 2 u^2) dif u = 0\ | ||
dif ln x + dif 1/2 ln (2 u + 2 u^2) = 0\ | ||
ln x + 1/2 ln (2 y/x + 2 y^2/x^2) = C\ | ||
$ | ||
== | ||
$ | ||
(dif x)/ (x - z) = (dif y)/ (y - z) = (dif z) / (2 z)\ | ||
(dif x)/ (x - z) = (dif z) / (2 z)\ | ||
2 z dif x - (x - z) dif z = 0\ | ||
2 dif x - (x / z - 1) dif z = 0\ | ||
u = x / z, x = z u, dif x = u dif z + z dif u\ | ||
2 (u dif z + z dif u) - (u - 1) dif z = 0\ | ||
(u + 1) dif z + 2 z dif u = 0\ | ||
1/z dif z + 2/(u + 1) dif u = 0\ | ||
ln z + 2 ln (u + 1) = C\ | ||
(x/z+1)^2 z = C\ | ||
(x - z) partialDer(u, x) = 2 (x/z + 1)(x - z)\ | ||
partialDer(u, z) = (x/z+1)^2 + z (-x/z^2) 2(x/z + 1)\ | ||
2 z partialDer(u, z) = 2(x+z)(x/z + 1) -4 x (x/z + 1) = | ||
$ | ||
$ | ||
(dif y)/ (y - z) = (dif z) / (2 z)\ | ||
(y/z + 1)^2 z = C | ||
$ | ||
== | ||
$ | ||
(dif x)/(x y) = (dif y)/(x - 2 z) = (dif z)/(y z) | ||
$ | ||
$ | ||
(dif x)/(x) = (dif z)/(z)\ | ||
x/z = C_1 | ||
$ | ||
$ | ||
y' = (x - 2 z)/(x y)\ | ||
z' = z / x\ | ||
y y' + 2 z' = 1\ | ||
1/2 y^2 + 2 z - x = C\ | ||
$ | ||
$ | ||
z = 1/2 x -1/4 y^2\ | ||
x y partialDer(z, x) = 1/2 x y\ | ||
(x - 2 z) partialDer(z, y) = (x - 2 z) (-1/2 y) | ||
$ | ||
$ | ||
(dif x_i)/(x_i) = (dif y)/(k y)\ | ||
ln x_i - 1/k ln (k y) = 0\ | ||
y = C x_i^k | ||
$ |