-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
2,339 additions
and
47 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
#import "../../template.typ": * | ||
#import "@preview/commute:0.2.0": node, arr, commutative-diagram | ||
|
||
#show: note.with( | ||
title: "作业12", | ||
author: "YHTQ", | ||
date: none, | ||
logo: none, | ||
withOutlined : false, | ||
withTitle :false, | ||
withHeadingNumbering: false | ||
) | ||
= ex 1.5 | ||
== 1 | ||
#let CC = $cone(C)$ | ||
注意到: | ||
$ | ||
d^CC_n vec(c_(n-1), c_n) = vec(-d_(n-1) (c_(n-1)), d_n (c_n) - c_(n-1)) | ||
$ | ||
由于它确实是复形,验证正合只需任取 $vec(c_(n-1), c_n) in ker d^CC_n$,验证它在 $im d^CC_(n+1)$ 中即可。事实上: | ||
$ | ||
vec(-d_(n-1) (c_(n-1)), d_n (c_n) - c_(n-1)) = 0 <=> c_(n-1) in ker d_(n-1) sect im d_n, c_(n-1) = d_n (c_(n))\ | ||
d^CC_(n+1) vec(-c_(n), 0) = vec(d_(n) (c_(n)), c_(n)) = vec(c_(n-1), c_(n) ) | ||
$ | ||
上两式表明: | ||
$ | ||
forall vec(c_(n-1), c_n) in ker d^CC_n, vec(c_(n-1), c_(n) ) = d^CC_(n+1) vec(-c_(n), 0) in im d^CC_(n+1) | ||
$ | ||
足以给出正合性,同时表明题设的 $s$ 满足: | ||
$ | ||
d s|_(ker d) = id \ | ||
d s|_(ker d) d = d \ | ||
d s|_(im d) d = d \ | ||
d s d = d \ | ||
$ | ||
表明确实是分裂映射 | ||
== 2 | ||
零调的定义是存在 $s$ 满足 | ||
$ | ||
f = d_D s + s d_C | ||
$<def-null> | ||
而题设映射是复形间态射等价于: | ||
$ | ||
(-s, f) mat(-d_C, 0;-id, d_C) vec(c', c) = d_D (-s, f) vec(c', c)\ | ||
(s d_C - f, f d_C) vec(c', c) = d_D (-s, f) vec(c', c)\ | ||
$ | ||
表明: | ||
$ | ||
cases( | ||
s d_C - f = -d_D s,\ | ||
f d_C = d_D f | ||
) | ||
$ | ||
其中 $f d_C = d_D f$ 来源与复形同态的定义,当然有上式与@def-null 等价 | ||
|
||
== 3 | ||
$f tilde g$ 的定义是存在 $s$ 使得: | ||
$ | ||
f - g = d_D s + s d_C | ||
$<def-hom> | ||
而题设映射是复形间同态等价于: | ||
$ | ||
(f, s, g)mat(d_C, id, 0;0, -d_C, 0;0, -id, d_C) = d_D (f, s, g) | ||
$ | ||
也即: | ||
$ | ||
cases( | ||
f d_C = d_D f, | ||
g d_C = d_D g, | ||
f - s d_C - g = d_D s | ||
) | ||
$ | ||
其中前两者是复形同态的定义,当然与@def-hom 等价 | ||
= ex 2.1 | ||
== 2 | ||
只证明同调 $delta-$函子情形,余调是类似的\ | ||
任给 $delta-$函子 $S$ 和自然变换 $f_0 :S_0 -> T_0$,既然 $T_n = 0$,当然 $f_n : S_n -> T_n$ 在 $n >= 1$ 时取并且只能取零映射,这就给出了泛性质 | ||
= ex 2.2 | ||
== 1 | ||
- 首先,假设 $P$ 是 $C$ 中投射对象。显然它的每一项都是投射对象,由前面的命题只需证明存在 $s: P -> P$ 使得 $(-s, id): cone(P) -> P$ 是复形间的同态。 | ||
不难发现有交换图: | ||
#align(center)[#commutative-diagram( | ||
node((0, 0), $...$, 1), | ||
node((0, 1), $P_(n-1) directSum P_n$, 2), | ||
node((0, 2), $P_(n-2) directSum P_(n-1)$, 3), | ||
node((1, 0), $...$, 4), | ||
node((1, 1), $P_(n-1)$, 5), | ||
node((1, 2), $P_(n-2)$, 6), | ||
arr(1, 2, $$), | ||
arr(2, 3, $mat(-d_C, 0;-id, d_C)$), | ||
arr(4, 5, $$), | ||
arr(5, 6, $-d_(n-1)$), | ||
arr(1, 4, $$), | ||
arr(2, 5, $id directSum 0$), | ||
arr(3, 6, $id directSum 0$),)] | ||
换言之,$cone(P) -> P$ 间存在满同态,由投射对象的性质,将有交换图: | ||
$ | ||
#align(center)[#commutative-diagram( | ||
node((0, 0), $cone(P)$, 1), | ||
node((0, 1), $P$, 2), | ||
node((1, 0), $P$, 3), | ||
arr(1, 2, $id directSum 0$), | ||
arr(3, 2, $id$), | ||
arr(3, 1, $exists s'$),)] | ||
$ | ||
设 $s' = vec(s'_(1), s'_(2))$,交换图给出: | ||
$ | ||
s'_(1) = id: P_(n-1) -> P_(n-1)\ | ||
$ | ||
是复形间同态给出: | ||
$ | ||
mat(-d, 0;-id, d) vec(s'_(1), s'_2) = vec(s'_(1), s'_2)( -d) \ | ||
-id + d s'_2 = -s'_2 d\ | ||
d s'_2 + s'_2 d = id | ||
$ | ||
由熟知的定理,这给出 $P$ 确实是分裂的正合列 | ||
- 反之,假设 $P$ 是分裂的投射对象构成的正合列,任给 $X ->^f Y$ 是满射和 $P ->^g Y$,至少存在逐项的同态 $h: P_n -> X_n$ 使得: | ||
$ | ||
f h = g | ||
$ | ||
注意到: | ||
$ | ||
id = d s + s d\ | ||
$ | ||
令 $h' = d h s + h s d$,将有: | ||
$ | ||
f h' = f d h s + f h s d = d f h s + f h s d = d g s + g s d = g(d s + s d) = g\ | ||
d h' = d h s d = h' d | ||
$ | ||
表明 $h'$ 就是要找的复形间同态 | ||
== 2 | ||
设有复形 $X_i$,并且 $X_i$ 分别成为投射对象 $P_i$ 的满射像。设 $pi: P_i -> X_i$ 是满射 | ||
断言有交换图表: | ||
#align(center)[#commutative-diagram( | ||
node((0, 0), $X_i$, 1), | ||
node((0, 1), $X_(i-1)$, 2), | ||
node((1, 0), $P_i directSum P_(i+1)$, 3), | ||
node((1, 1), $P_(i-1) directSum P_i$, 4), | ||
arr(1, 2, $d$), | ||
arr(3, 1, $(pi, d pi)$), | ||
arr(4, 2, $(pi, d pi)$), | ||
arr(3, 4, $mat(0, 0;1, 0)$),)] | ||
不难验证下面一行是投射模构成的链复形,且: | ||
$ | ||
d(pi, d pi) = mat(-, 0;1, 0)(pi, d pi) | ||
$ | ||
因此交换图表成立,这是链复形之间的满态射。此外,取: | ||
$ | ||
s = mat(0, 1;0, 0): P_(i-1) directSum P_i -> P_i directSum P_(i+1) | ||
$ | ||
不难验证将有: | ||
$ | ||
d s d = d | ||
$ | ||
因此下面一行构成分裂的正合列,上面结论表明它是投射对象,证毕 | ||
= ex 2.3 | ||
== 1 | ||
#let xl = $overline(x)$ | ||
#let yl = $overline(y)$ | ||
#let ul = $overline(u)$ | ||
#let vl = $overline(v)$ | ||
#let dl = $overline(d)$ | ||
#let pl = $overline(p)$ | ||
由 Baer 法则,只需验证任给 $R = ZZ quo m ZZ$ 的理想 $J$ 以及 $f: J -> R$ 都可以延拓到 $R -> R$\ | ||
事实上,注意到 $R$ 是主理想环,可设 $J = (xl)$ 以及 $f(xl) = yl$(此时 $f$ 被唯一确定)\ | ||
由于 $f$ 是加法循环群之间的同态,将有: | ||
$ | ||
yl^(ord(xl)) = 0 => ord(yl) | ord(xl) | ||
$ | ||
根据循环群的结论,$RR$ 中阶为 $ord(xl)$ 子群 $(xl)$ 恰有一个,而 $(yl)$ 只能是其子群,进而可设: | ||
$ | ||
yl = ul xl | ||
$ | ||
因此: | ||
$ | ||
f' := [t: R -> ul t] | ||
$ | ||
就是 $f$ 的一个延拓,证毕 | ||
|
||
对于第二个结论,假设 $d|m, p | m, m /d$,则 $ ZZ quo d ZZ$ 是 $R$ 的一个理想,也是加法子群,进而可设为唯一的 $d$ 阶子群 $(xl)$,同时设 $m/d$ 阶子群为 $(yl)$,$p$ 阶子群为 $(pl)$,则有: | ||
$ | ||
(pl) subset (xl), (yl) | ||
$ | ||
考虑群同态(也是模同态): | ||
$ | ||
funcDef(f, (yl), (xl), yl, pl) | ||
$ | ||
假设它是 $f': R -> (xl)$ 的一个限制,并设: | ||
$ | ||
f'(1) = ul xl | ||
$ | ||
则 $f'(yl) = ul xl yl = pl$\ | ||
然而注意到: | ||
$ | ||
d = ord(xl) = m/(gcd(x, m))\ | ||
m/d = ord(yl) = m/(gcd(y, m))\ | ||
gcd(x, m) gcd(y, m) = m \ | ||
m/(gcd(x, m)) = gcd(y, m) | y => m | y gcd(x, m) = gcd(x y, m) => gcd(x y, m) = m | ||
$ | ||
意味着 $xl yl = 0 => pl = 0$,矛盾! | ||
== 2 | ||
设 $a in A, e_A (a) = 0$,由定义,这将意味着: | ||
$ | ||
forall f in Hom(A, QQ quo ZZ), f(a) = 0 | ||
$ | ||
然而考虑映射: | ||
$ | ||
funcDef(h, (a), QQ quo ZZ, a, 1/2) | ||
$ | ||
只要 $a != 0$ 上式就是群同态\ | ||
由内射对象的性质,有交换图: | ||
#align(center)[#commutative-diagram( | ||
node((0, 0), $(a)$, 1), | ||
node((0, 1), $A$, 2), | ||
node((1, 0), $QQ quo ZZ$, 3), | ||
arr(1, 2, $id$, inj_str), | ||
arr(2, 3, $exists h'$), | ||
arr(1, 3, $h$),)] | ||
显然 $h' in Hom(A, QQ quo ZZ), h'(a) !=0$,这表明 $e_A (a) = 0$ 除非 $a = 0$,也即 $e_A$ 是单射 | ||
== 3 | ||
$A = 0$ 时显有 $Hom(A, QQ quo ZZ) = 0$,反之由于上面给出了 $A -> Hom(QQ quo ZZ)$ 的单射,当然后者为零意味着前者为零 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.