Skip to content

Commit

Permalink
6.6
Browse files Browse the repository at this point in the history
  • Loading branch information
yhtq committed Jun 6, 2024
1 parent d82ad95 commit 2b83120
Show file tree
Hide file tree
Showing 8 changed files with 2,339 additions and 47 deletions.
12 changes: 12 additions & 0 deletions template.typ
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,9 @@

#let Gal = math.op("Gal")
#let Hom = math.op("Hom")
#let Ext = math.op("Ext")
#let Ob = math.op("Ob")
#let cone = math.op("cone")
#let Proj = math.op("Proj")
#let Spec = math.op("Spec")
#let Spv = math.op("Spv")
Expand Down Expand Up @@ -102,6 +105,15 @@
#let linearCombinationlambda = linearCombination.with(name: $lambda$)
#let linearCombinationmu = linearCombination.with(name: $mu$)

#let defaultSum = (
Var: $n$,
Lower: $0$,
Upper: $+infinity$

)
#let sumf(var: defaultSum.Var, lower: defaultSum.Lower, upper: defaultSum.Upper) = $sum_(#var = #lower)^(#upper)$


#let emptyArrow(s, e) = arr(str(s), str(e), $$)
#let coker = math.op("coker")
#let coim = math.op("coim")
Expand Down
222 changes: 222 additions & 0 deletions 代数学二/作业/hw12.typ
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

#show: note.with(
title: "作业12",
author: "YHTQ",
date: none,
logo: none,
withOutlined : false,
withTitle :false,
withHeadingNumbering: false
)
= ex 1.5
== 1
#let CC = $cone(C)$
注意到:
$
d^CC_n vec(c_(n-1), c_n) = vec(-d_(n-1) (c_(n-1)), d_n (c_n) - c_(n-1))
$
由于它确实是复形,验证正合只需任取 $vec(c_(n-1), c_n) in ker d^CC_n$,验证它在 $im d^CC_(n+1)$ 中即可。事实上:
$
vec(-d_(n-1) (c_(n-1)), d_n (c_n) - c_(n-1)) = 0 <=> c_(n-1) in ker d_(n-1) sect im d_n, c_(n-1) = d_n (c_(n))\
d^CC_(n+1) vec(-c_(n), 0) = vec(d_(n) (c_(n)), c_(n)) = vec(c_(n-1), c_(n) )
$
上两式表明:
$
forall vec(c_(n-1), c_n) in ker d^CC_n, vec(c_(n-1), c_(n) ) = d^CC_(n+1) vec(-c_(n), 0) in im d^CC_(n+1)
$
足以给出正合性,同时表明题设的 $s$ 满足:
$
d s|_(ker d) = id \
d s|_(ker d) d = d \
d s|_(im d) d = d \
d s d = d \
$
表明确实是分裂映射
== 2
零调的定义是存在 $s$ 满足
$
f = d_D s + s d_C
$<def-null>
而题设映射是复形间态射等价于:
$
(-s, f) mat(-d_C, 0;-id, d_C) vec(c', c) = d_D (-s, f) vec(c', c)\
(s d_C - f, f d_C) vec(c', c) = d_D (-s, f) vec(c', c)\
$
表明:
$
cases(
s d_C - f = -d_D s,\
f d_C = d_D f
)
$
其中 $f d_C = d_D f$ 来源与复形同态的定义,当然有上式与@def-null 等价

== 3
$f tilde g$ 的定义是存在 $s$ 使得:
$
f - g = d_D s + s d_C
$<def-hom>
而题设映射是复形间同态等价于:
$
(f, s, g)mat(d_C, id, 0;0, -d_C, 0;0, -id, d_C) = d_D (f, s, g)
$
也即:
$
cases(
f d_C = d_D f,
g d_C = d_D g,
f - s d_C - g = d_D s
)
$
其中前两者是复形同态的定义,当然与@def-hom 等价
= ex 2.1
== 2
只证明同调 $delta-$函子情形,余调是类似的\
任给 $delta-$函子 $S$ 和自然变换 $f_0 :S_0 -> T_0$,既然 $T_n = 0$,当然 $f_n : S_n -> T_n$$n >= 1$ 时取并且只能取零映射,这就给出了泛性质
= ex 2.2
== 1
- 首先,假设 $P$$C$ 中投射对象。显然它的每一项都是投射对象,由前面的命题只需证明存在 $s: P -> P$ 使得 $(-s, id): cone(P) -> P$ 是复形间的同态。
不难发现有交换图:
#align(center)[#commutative-diagram(
node((0, 0), $...$, 1),
node((0, 1), $P_(n-1) directSum P_n$, 2),
node((0, 2), $P_(n-2) directSum P_(n-1)$, 3),
node((1, 0), $...$, 4),
node((1, 1), $P_(n-1)$, 5),
node((1, 2), $P_(n-2)$, 6),
arr(1, 2, $$),
arr(2, 3, $mat(-d_C, 0;-id, d_C)$),
arr(4, 5, $$),
arr(5, 6, $-d_(n-1)$),
arr(1, 4, $$),
arr(2, 5, $id directSum 0$),
arr(3, 6, $id directSum 0$),)]
换言之,$cone(P) -> P$ 间存在满同态,由投射对象的性质,将有交换图:
$
#align(center)[#commutative-diagram(
node((0, 0), $cone(P)$, 1),
node((0, 1), $P$, 2),
node((1, 0), $P$, 3),
arr(1, 2, $id directSum 0$),
arr(3, 2, $id$),
arr(3, 1, $exists s'$),)]
$
$s' = vec(s'_(1), s'_(2))$,交换图给出:
$
s'_(1) = id: P_(n-1) -> P_(n-1)\
$
是复形间同态给出:
$
mat(-d, 0;-id, d) vec(s'_(1), s'_2) = vec(s'_(1), s'_2)( -d) \
-id + d s'_2 = -s'_2 d\
d s'_2 + s'_2 d = id
$
由熟知的定理,这给出 $P$ 确实是分裂的正合列
- 反之,假设 $P$ 是分裂的投射对象构成的正合列,任给 $X ->^f Y$ 是满射和 $P ->^g Y$,至少存在逐项的同态 $h: P_n -> X_n$ 使得:
$
f h = g
$
注意到:
$
id = d s + s d\
$
$h' = d h s + h s d$,将有:
$
f h' = f d h s + f h s d = d f h s + f h s d = d g s + g s d = g(d s + s d) = g\
d h' = d h s d = h' d
$
表明 $h'$ 就是要找的复形间同态
== 2
设有复形 $X_i$,并且 $X_i$ 分别成为投射对象 $P_i$ 的满射像。设 $pi: P_i -> X_i$ 是满射
断言有交换图表:
#align(center)[#commutative-diagram(
node((0, 0), $X_i$, 1),
node((0, 1), $X_(i-1)$, 2),
node((1, 0), $P_i directSum P_(i+1)$, 3),
node((1, 1), $P_(i-1) directSum P_i$, 4),
arr(1, 2, $d$),
arr(3, 1, $(pi, d pi)$),
arr(4, 2, $(pi, d pi)$),
arr(3, 4, $mat(0, 0;1, 0)$),)]
不难验证下面一行是投射模构成的链复形,且:
$
d(pi, d pi) = mat(-, 0;1, 0)(pi, d pi)
$
因此交换图表成立,这是链复形之间的满态射。此外,取:
$
s = mat(0, 1;0, 0): P_(i-1) directSum P_i -> P_i directSum P_(i+1)
$
不难验证将有:
$
d s d = d
$
因此下面一行构成分裂的正合列,上面结论表明它是投射对象,证毕
= ex 2.3
== 1
#let xl = $overline(x)$
#let yl = $overline(y)$
#let ul = $overline(u)$
#let vl = $overline(v)$
#let dl = $overline(d)$
#let pl = $overline(p)$
由 Baer 法则,只需验证任给 $R = ZZ quo m ZZ$ 的理想 $J$ 以及 $f: J -> R$ 都可以延拓到 $R -> R$\
事实上,注意到 $R$ 是主理想环,可设 $J = (xl)$ 以及 $f(xl) = yl$(此时 $f$ 被唯一确定)\
由于 $f$ 是加法循环群之间的同态,将有:
$
yl^(ord(xl)) = 0 => ord(yl) | ord(xl)
$
根据循环群的结论,$RR$ 中阶为 $ord(xl)$ 子群 $(xl)$ 恰有一个,而 $(yl)$ 只能是其子群,进而可设:
$
yl = ul xl
$
因此:
$
f' := [t: R -> ul t]
$
就是 $f$ 的一个延拓,证毕

对于第二个结论,假设 $d|m, p | m, m /d$,则 $ ZZ quo d ZZ$$R$ 的一个理想,也是加法子群,进而可设为唯一的 $d$ 阶子群 $(xl)$,同时设 $m/d$ 阶子群为 $(yl)$$p$ 阶子群为 $(pl)$,则有:
$
(pl) subset (xl), (yl)
$
考虑群同态(也是模同态):
$
funcDef(f, (yl), (xl), yl, pl)
$
假设它是 $f': R -> (xl)$ 的一个限制,并设:
$
f'(1) = ul xl
$
$f'(yl) = ul xl yl = pl$\
然而注意到:
$
d = ord(xl) = m/(gcd(x, m))\
m/d = ord(yl) = m/(gcd(y, m))\
gcd(x, m) gcd(y, m) = m \
m/(gcd(x, m)) = gcd(y, m) | y => m | y gcd(x, m) = gcd(x y, m) => gcd(x y, m) = m
$
意味着 $xl yl = 0 => pl = 0$,矛盾!
== 2
$a in A, e_A (a) = 0$,由定义,这将意味着:
$
forall f in Hom(A, QQ quo ZZ), f(a) = 0
$
然而考虑映射:
$
funcDef(h, (a), QQ quo ZZ, a, 1/2)
$
只要 $a != 0$ 上式就是群同态\
由内射对象的性质,有交换图:
#align(center)[#commutative-diagram(
node((0, 0), $(a)$, 1),
node((0, 1), $A$, 2),
node((1, 0), $QQ quo ZZ$, 3),
arr(1, 2, $id$, inj_str),
arr(2, 3, $exists h'$),
arr(1, 3, $h$),)]
显然 $h' in Hom(A, QQ quo ZZ), h'(a) !=0$,这表明 $e_A (a) = 0$ 除非 $a = 0$,也即 $e_A$ 是单射
== 3
$A = 0$ 时显有 $Hom(A, QQ quo ZZ) = 0$,反之由于上面给出了 $A -> Hom(QQ quo ZZ)$ 的单射,当然后者为零意味着前者为零
56 changes: 51 additions & 5 deletions 代数学二/章节/上半学期.typ
Original file line number Diff line number Diff line change
Expand Up @@ -1155,8 +1155,8 @@
$
它们当然在 $coker(alpha)$ 中对应相同的等价类

我们将有结论
- #align(center)[#commutative-diagram(
将有
#align(center)[#commutative-diagram(
node((1, 0), $ker alpha$, "3"),
node((1, 1), $coker alpha$, "4"),
node((2, 0), $ker beta$, "5"),
Expand All @@ -1172,7 +1172,52 @@

]
给出正合列
- 若 $$

此外,若:
#align(center)[#commutative-diagram(
node((0, 0), $0$, "1"),
node((1, 0), $Y'$, "3"),
node((1, 1), $X'$, "4"),
node((2, 0), $Y$, "5"),
node((2, 1), $X$, "6"),
node((3, 0), $Y''$, "7"),
node((3, 1), $X''$, "8"),
node((4, 1), $0$, "9"),
node((4, 0), $0$, "10"),
node((0, 1), $0$, "11"),
arr("1", "3", $$),
arr("4", "3", $alpha$),
arr("3", "5", $mu$),
arr("4", "6", $f$),
arr("6", "5", $beta$),
arr("5", "7", $nu$),
arr("6", "8", $g$),
arr("8", "7", $gamma$),
arr("8", "9", $$),
arr("7", "10", $$),
arr("11", "4", $$),
)
]
是两列正合列,则结论的正合列变成:
#align(center)[#commutative-diagram(
node((0, 0), $0$, "0"),
node((1, 0), $ker alpha$, "3"),
node((1, 1), $coker alpha$, "4"),
node((2, 0), $ker beta$, "5"),
node((2, 1), $coker beta$, "6"),
node((3, 0), $ker gamma$, "7"),
node((3, 1), $coker gamma$, "8"),
node((4, 1), $0$, "9"),
arr("3", "5", $f$),
arr("4", "6", $mu$),
arr("5", "7", $g$),
arr("6", "8", $nu$),
arr("7", "4", $delta$),
arr("0", "3", $$),
arr("8", "9", $$),
)

]
]
#proof[
- 除了 $delta$ 处之外的结论都是显然的,只证明 $delta$ 处。有:
Expand Down Expand Up @@ -1231,8 +1276,6 @@
)

]
#TODO

最终给出上同调群的长正合列:
#align(center)[#commutative-diagram(
node((0, 0), $dots.v$, "2"),
Expand All @@ -1254,6 +1297,9 @@

]
]
#proof[
在下半学期给出
]
#corollary[][
- 若 $X^*, Y^*, Z^*$ 之中有两个已经正合,则第三个也正合
- (9-Lemma)设三列短正合列有:
Expand Down
Loading

0 comments on commit 2b83120

Please sign in to comment.