-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
334 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark | ||
#import "../../template.typ": * | ||
#import "../main.typ": not1, True, False, infer | ||
#import "../main.typ": * | ||
#show: note.with( | ||
title: "作业5_1", | ||
author: "YHTQ", | ||
date: datetime.today().display(), | ||
logo: none, | ||
withOutlined : false, | ||
withTitle : false, | ||
withHeadingNumbering: false | ||
) | ||
#set heading(numbering: | ||
(..nums) => | ||
{ | ||
let nums1 = nums.pos() | ||
nums1.insert(0, 11) | ||
numbering("1.1.(a)", ..nums1) | ||
} | ||
) | ||
= #empty | ||
任取模型 $M$,在其上都构造规范模型(论域为 $M$ 中论域的等价类,其他解释是典范的) | ||
#lemmaLinear[][ | ||
公式 $calA$ 在 $M$ 上为真当且仅当它在 $M$ 对应的规范模型 $M_1$ 上为真 | ||
] | ||
#proof[ | ||
#let ti = $t_1, t_2, ..., t_n$ | ||
#let oti = $overline(t_1), overline(t_2), ..., overline(t_n)$ | ||
由条件 $calA$ 在该规范模型 $M_1$ 中为真,往证 $calA$ 在 $M$ 中为真。对 $calA$ 做结构归纳法: | ||
- $calA = not1 calB, calB -> calC$ 显然 | ||
- $calA = forall x calB$,由定义及归纳条件有: | ||
$ | ||
M models forall x calB <=> forall d in D_M, M models calB (x\/d) <=> forall d in D_M, M_1 models calB (x\/d) <=> M_1 models forall x calB | ||
$ | ||
- $calA = A_i^n (t_1, t_2, ..., t_n)$\ | ||
由规范模型对谓词和项的解释的良定义性,显然 | ||
] | ||
由引理,结论显然 | ||
= #empty | ||
== #empty | ||
#deduction[ | ||
+ $x = x := fA$ | ||
+ $x = x -> calA(x) -> (x = x and calA(x)) := "and intro"$ | ||
+ $calA(x) -> (x = x and calA(x)) := MPb(1, 2)$ | ||
+ $(x = x and calA(x)) -> exists y (x = y and calA(y)) := "exists intro"$(注意到 $y$ 不在 $calA(x)$ 中出现) | ||
+ $calA(x) -> exists y (x = y and calA(y)) := #transitivity-b(3, 4)$ | ||
|
||
] | ||
表明 $tack calA(x) -> exists y (x = y and calA(y))$,另一方面,先证明: | ||
$ | ||
exists y (x = y and calA(y)) tack calA(x) | ||
$ | ||
#deduction[ | ||
+ $x = y and calA(y) := "exists elim"$ (注意到 $y$ 不在 $calA(x)$ 中出现) | ||
+ $x = y := "and elim left"(1)$ | ||
+ $y = x := MPb(2, "symm")$ | ||
+ $calA(y) := "and elim right"(1)$ | ||
+ $calA(x) := MPb(3, fA)$ (E8' 只说明了谓词符情形,但一般公式情形容易归纳得到) | ||
] | ||
而证明过程中没有用到 GEN,因此演绎定理给出: | ||
$ | ||
tack exists y (x = y and calA(y)) -> calA(x) | ||
$ | ||
综合以上,以及 | ||
$ | ||
tack (calA(x) -> exists y (x = y and calA(y))) -> (exists y (x = y and calA(y)) -> calA(x)) -> (calA(x) <-> exists y (x = y and calA(y))) | ||
$ | ||
使用 MP 即得结论 | ||
== #empty | ||
#deduction[ | ||
+ $x = x := fA$ | ||
+ $exists y, x = y := "exists intro"$(注意到 $y$ 不在 $x = x$ 中出现) | ||
+ $forall x, exists y, x = y := GEN$ | ||
] | ||
= #empty | ||
定义一阶语言包括: | ||
- 变元 $x_1, x_2, ...$ | ||
- 常元 $0, 1$ | ||
- 函项符 $+, *, -("一元函项"), dot^(-1)$ | ||
- 谓词符 $=$ | ||
- 逻辑符 $forall, not1, ->$ | ||
(这里为了直观起见,$+, *$ 都使用中缀形式) | ||
|
||
公理包括一阶逻辑公理,等词公理以及: | ||
- $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$ | ||
- $x_1 + x_2 = x_2 + x_1$ | ||
- $x_1 + 0 = x_1$ | ||
- $x_1 + (-x_1) = 0$ | ||
- $x_1 * (x_2 * x_3) = (x_1 * x_2) *x_3$ | ||
- $x_1 * x_2 = x_2 * x_1$ | ||
- $x_1 * 1 = x_1$ | ||
- $x_1 * (x_1)^(-1) = 1$ | ||
- $x_1 * (x_2 + x_3) = (x_1 * x_2) + (x_1 * x_3)$ | ||
= #empty | ||
== #empty | ||
+ 若 $x$ 是点,则它不是线 | ||
+ 若 $x$ 在 $y$ 上,则 $x$ 是点,$y$ 是线 | ||
+ 若 $x$ 是线,则其上存在不相等的两点 | ||
+ 若 $x, y$ 是不相等的两点,则存在唯一的线经过它们 | ||
+ 存在不共线三点 | ||
== #empty | ||
先证明: | ||
$ | ||
S(u) and S(v) and u != v, L(x, u) and L(x, v) and L(y, u) and L(y, v) tack x = y | ||
$ | ||
#deduction[ | ||
+ $S(u) and S(v) := fS$ | ||
+ $L(x, u) and L(x, v) and L(y, u) and L(y, v) := fS$ | ||
+ $P(x) := "and-elim" MPb("and-elim"(2), fA)$ | ||
+ $P(y) := "and-elim" MPb("and-elim"(2), fA)$ | ||
+ $P(x) -> P(y) -> (x != y) -> (P(x) and P(y) and x != y) := tauto$ | ||
+ $(x != y) -> (P(x) and P(y) and x != y) := MPb(4, MPb(3,5))$ | ||
+ $P(x) and P(y) and x != y -> (exists_1 z)(S(z) and L(x, z) and L(y, z)) := fA$ | ||
+ $(exists_1 z)(S(z) and L(x, z) and L(y, z)) -> (forall x_1 forall x_2 (S(x_1) and L(x, x_1) and L(y, x_1) -> (S(x_2) and L(x, x_2) and L(y, x_2)) -> x_1 = x_2)) := "def"$ | ||
+ $(forall x_1 forall x_2 (S(x_1) and L(x, x_1) and L(y, x_1) -> (S(x_2) and L(x, x_2) and L(y, x_2)) -> x_1 = x_2)) -> S(u) and L(x, u) and L(y, u) -> (S(v) and L(x, v) and L(y, v)) -> u = v := "forall-elim"$ | ||
+ $x != y -> S(u) and L(x, u) and L(y, u) -> (S(v) and L(x, v) and L(y, v)) -> u = v := transitivity(..., ...)$ | ||
+ $S(u) and L(x, u) and L(y, u) := "and-intro" ("and-elim"(1), "and-elim"(2))$ | ||
+ $S(v) and L(x, v) and L(y, v) := "and-intro" ("and-elim"(1), "and-elim"(2))$ | ||
+ $calA -> ((calB -> (calA -> calC)) -> (calB -> calC)) := tauto$ | ||
+ $x != y -> (S(v) and L(x, v) and L(y, v)) -> u = v := MPb(9, MPb(11, 13))$ | ||
+ $x != y -> u = v := MPb(10, MPb(12, 13))$ | ||
+ $not1 (u = v) -> u = y -> (x = y) := tauto$ | ||
+ $u != v -> u = y -> (x = y) := "def"$ | ||
+ $u = y -> (x = y) := MPb(fA, 17)$ | ||
+ $x != y -> x = y := #transitivity-b(15, 18)$ | ||
+ $(not1 (x = y) -> x = y) -> (x = y) := tauto$ | ||
+ $(x != y -> x = y) -> (x = y) := "def"$ | ||
+ $x = y := MPb(19, 21)$ | ||
] | ||
几何语言为两个不相等的线的任意两个焦点相等 | ||
== #empty | ||
=== #empty | ||
不难发现 $u != v$ 可证等价于 $u = v -> (u != v)$,因此往证: | ||
$ | ||
tack R(u, v) -> u = v -> u != v | ||
$ | ||
用演绎定理,往证: | ||
$ | ||
R(u, v), u = v tack u != v | ||
$ | ||
事实上,显有: | ||
$ | ||
R(u, v) tack not1 exists w (L(w, u) and L(w, v)) | ||
$ | ||
以及: | ||
$ | ||
S(u) tack (exists y) (exists z) (y != z and L(y, x) and L(z, x)) tack exists y L(y, x) ("使用" exists, and "消去即可") | ||
$ | ||
从而: | ||
$ | ||
R(u, v), u = v tack exists y L(y, u) tack exists y L(y, v) and L(y, v) | ||
$ | ||
总之有: | ||
$ | ||
R(u, v), u = v tack (exists y L(y, u) tack exists y L(y, v) and L(y, v)) and (not1 exists w (L(w, u) and L(w, v))) | ||
$ | ||
利用重言式 $calA and (not1 calA) -> calB$ 即得原式 | ||
=== | ||
设论域为: | ||
- 点为 $ZZ_2$ 中的点 | ||
- 线为 $ZZ_2$ 中的二元线性方程 $A x + B y + C = 0$ 的零点集($A, B$ 不全为零) | ||
显然论域是有限集 | ||
|
||
设点 $(x_0, y_0)$ 不在直线 $A x + B y + C = 0$ 上,则有 $A x_0 + B y_0 + C != 0$,考虑直线: | ||
$ | ||
A x + B y - (A x_0 + B y_0) | ||
$ | ||
则它是不同于且平行于直线 $A x + B y + C = 0$ 的直线,并且过 $(x_0, y_0)$。同时,考虑线性方程组: | ||
$ | ||
A' x_0 + B' y_0 + C' = 0\ | ||
A' B - A B' = 0 | ||
$ | ||
系数矩阵为: | ||
$ | ||
mat(x_0, y_0, 1; B, -A, 0) | ||
$ | ||
由于 $A, B$ 不全为零,解空间维度为一,说明满足条件的直线唯一 | ||
== | ||
取经典的平面射影几何,其中任何不相等的两条线都交于一点,因此没有平行线 |
Oops, something went wrong.