Skip to content

Commit

Permalink
11.28
Browse files Browse the repository at this point in the history
  • Loading branch information
yhtq committed Nov 28, 2024
1 parent d90a47b commit 69b7a32
Show file tree
Hide file tree
Showing 4 changed files with 334 additions and 13 deletions.
4 changes: 2 additions & 2 deletions template.typ
Original file line number Diff line number Diff line change
Expand Up @@ -394,8 +394,8 @@
#body
#parbreak()
]
#let (alg, rules: alg-rules) = new-theorems("thm-group", ("alg": "algorithm"))
#let (alg1, rules: alg-rules1) = new-theorems("thm-group-linear", ("alg1": "algorithm"), thm-numbering: thm-numbering-linear)
#let (alg, rules: alg-rules) = new-theorems("thm-group", ("alg": "Algorithm"), thm-styling: theorem-like-style)
#let (alg1, rules: alg-rules1) = new-theorems("thm-group-linear", ("alg1": "Algorithm"), thm-numbering: thm-numbering-linear, thm-styling: theorem-like-style)
#let theorem(name, body) = _convert(theo, name, body)
#let lemma(name, body) = _convert(lem, name, body)
#let corollary(name, body) = _convert(cor, name, body)
Expand Down
8 changes: 4 additions & 4 deletions 数理逻辑/main.typ
Original file line number Diff line number Diff line change
Expand Up @@ -1318,15 +1318,15 @@
其中 $t_i$ 是任意项
]
一般而言,我们讨论数学系统时,默认它们都是带有等词公理的一阶理论(这种一阶理论也称为*带等词的一阶逻辑*
#proposition[][
若一个一致的一阶理论有等词公理,则它存在一个模型,其中 $A_1^2$ 的解释为 $=$
#theorem[规范模型][
称一个带等词的一阶理论中的一个模型是规范的,如果它是至多可列无穷,且 $A_1^2$ 的解释是 $=$ \
任何含有等词公理的一致一阶理论都有规范模型
]
#proof[
取等价类即可
]
#theorem[规范模型][
称一个带等词的一阶理论中的一个模型是规范的,如果它是至多可列无穷,且 $A_1^2$ 的解释是 $=$ \
任何含有等词公理的一致一阶理论都有规范模型
任何带等词的一致一阶理论都有至多可枚举无穷的规范模型
]
#theorem[][
带等值的一阶理论也具有可靠性与完备性,同时也是一致的。
Expand Down
180 changes: 180 additions & 0 deletions 数理逻辑/作业/ml-5_1-hw.typ
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark
#import "../../template.typ": *
#import "../main.typ": not1, True, False, infer
#import "../main.typ": *
#show: note.with(
title: "作业5_1",
author: "YHTQ",
date: datetime.today().display(),
logo: none,
withOutlined : false,
withTitle : false,
withHeadingNumbering: false
)
#set heading(numbering:
(..nums) =>
{
let nums1 = nums.pos()
nums1.insert(0, 11)
numbering("1.1.(a)", ..nums1)
}
)
= #empty
任取模型 $M$,在其上都构造规范模型(论域为 $M$ 中论域的等价类,其他解释是典范的)
#lemmaLinear[][
公式 $calA$$M$ 上为真当且仅当它在 $M$ 对应的规范模型 $M_1$ 上为真
]
#proof[
#let ti = $t_1, t_2, ..., t_n$
#let oti = $overline(t_1), overline(t_2), ..., overline(t_n)$
由条件 $calA$ 在该规范模型 $M_1$ 中为真,往证 $calA$$M$ 中为真。对 $calA$ 做结构归纳法:
- $calA = not1 calB, calB -> calC$ 显然
- $calA = forall x calB$,由定义及归纳条件有:
$
M models forall x calB <=> forall d in D_M, M models calB (x\/d) <=> forall d in D_M, M_1 models calB (x\/d) <=> M_1 models forall x calB
$
- $calA = A_i^n (t_1, t_2, ..., t_n)$\
由规范模型对谓词和项的解释的良定义性,显然
]
由引理,结论显然
= #empty
== #empty
#deduction[
+ $x = x := fA$
+ $x = x -> calA(x) -> (x = x and calA(x)) := "and intro"$
+ $calA(x) -> (x = x and calA(x)) := MPb(1, 2)$
+ $(x = x and calA(x)) -> exists y (x = y and calA(y)) := "exists intro"$(注意到 $y$ 不在 $calA(x)$ 中出现)
+ $calA(x) -> exists y (x = y and calA(y)) := #transitivity-b(3, 4)$

]
表明 $tack calA(x) -> exists y (x = y and calA(y))$,另一方面,先证明:
$
exists y (x = y and calA(y)) tack calA(x)
$
#deduction[
+ $x = y and calA(y) := "exists elim"$ (注意到 $y$ 不在 $calA(x)$ 中出现)
+ $x = y := "and elim left"(1)$
+ $y = x := MPb(2, "symm")$
+ $calA(y) := "and elim right"(1)$
+ $calA(x) := MPb(3, fA)$ (E8' 只说明了谓词符情形,但一般公式情形容易归纳得到)
]
而证明过程中没有用到 GEN,因此演绎定理给出:
$
tack exists y (x = y and calA(y)) -> calA(x)
$
综合以上,以及
$
tack (calA(x) -> exists y (x = y and calA(y))) -> (exists y (x = y and calA(y)) -> calA(x)) -> (calA(x) <-> exists y (x = y and calA(y)))
$
使用 MP 即得结论
== #empty
#deduction[
+ $x = x := fA$
+ $exists y, x = y := "exists intro"$(注意到 $y$ 不在 $x = x$ 中出现)
+ $forall x, exists y, x = y := GEN$
]
= #empty
定义一阶语言包括:
- 变元 $x_1, x_2, ...$
- 常元 $0, 1$
- 函项符 $+, *, -("一元函项"), dot^(-1)$
- 谓词符 $=$
- 逻辑符 $forall, not1, ->$
(这里为了直观起见,$+, *$ 都使用中缀形式)

公理包括一阶逻辑公理,等词公理以及:
- $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$
- $x_1 + x_2 = x_2 + x_1$
- $x_1 + 0 = x_1$
- $x_1 + (-x_1) = 0$
- $x_1 * (x_2 * x_3) = (x_1 * x_2) *x_3$
- $x_1 * x_2 = x_2 * x_1$
- $x_1 * 1 = x_1$
- $x_1 * (x_1)^(-1) = 1$
- $x_1 * (x_2 + x_3) = (x_1 * x_2) + (x_1 * x_3)$
= #empty
== #empty
+ 若 $x$ 是点,则它不是线
+ 若 $x$$y$ 上,则 $x$ 是点,$y$ 是线
+ 若 $x$ 是线,则其上存在不相等的两点
+ 若 $x, y$ 是不相等的两点,则存在唯一的线经过它们
+ 存在不共线三点
== #empty
先证明:
$
S(u) and S(v) and u != v, L(x, u) and L(x, v) and L(y, u) and L(y, v) tack x = y
$
#deduction[
+ $S(u) and S(v) := fS$
+ $L(x, u) and L(x, v) and L(y, u) and L(y, v) := fS$
+ $P(x) := "and-elim" MPb("and-elim"(2), fA)$
+ $P(y) := "and-elim" MPb("and-elim"(2), fA)$
+ $P(x) -> P(y) -> (x != y) -> (P(x) and P(y) and x != y) := tauto$
+ $(x != y) -> (P(x) and P(y) and x != y) := MPb(4, MPb(3,5))$
+ $P(x) and P(y) and x != y -> (exists_1 z)(S(z) and L(x, z) and L(y, z)) := fA$
+ $(exists_1 z)(S(z) and L(x, z) and L(y, z)) -> (forall x_1 forall x_2 (S(x_1) and L(x, x_1) and L(y, x_1) -> (S(x_2) and L(x, x_2) and L(y, x_2)) -> x_1 = x_2)) := "def"$
+ $(forall x_1 forall x_2 (S(x_1) and L(x, x_1) and L(y, x_1) -> (S(x_2) and L(x, x_2) and L(y, x_2)) -> x_1 = x_2)) -> S(u) and L(x, u) and L(y, u) -> (S(v) and L(x, v) and L(y, v)) -> u = v := "forall-elim"$
+ $x != y -> S(u) and L(x, u) and L(y, u) -> (S(v) and L(x, v) and L(y, v)) -> u = v := transitivity(..., ...)$
+ $S(u) and L(x, u) and L(y, u) := "and-intro" ("and-elim"(1), "and-elim"(2))$
+ $S(v) and L(x, v) and L(y, v) := "and-intro" ("and-elim"(1), "and-elim"(2))$
+ $calA -> ((calB -> (calA -> calC)) -> (calB -> calC)) := tauto$
+ $x != y -> (S(v) and L(x, v) and L(y, v)) -> u = v := MPb(9, MPb(11, 13))$
+ $x != y -> u = v := MPb(10, MPb(12, 13))$
+ $not1 (u = v) -> u = y -> (x = y) := tauto$
+ $u != v -> u = y -> (x = y) := "def"$
+ $u = y -> (x = y) := MPb(fA, 17)$
+ $x != y -> x = y := #transitivity-b(15, 18)$
+ $(not1 (x = y) -> x = y) -> (x = y) := tauto$
+ $(x != y -> x = y) -> (x = y) := "def"$
+ $x = y := MPb(19, 21)$
]
几何语言为两个不相等的线的任意两个焦点相等
== #empty
=== #empty
不难发现 $u != v$ 可证等价于 $u = v -> (u != v)$,因此往证:
$
tack R(u, v) -> u = v -> u != v
$
用演绎定理,往证:
$
R(u, v), u = v tack u != v
$
事实上,显有:
$
R(u, v) tack not1 exists w (L(w, u) and L(w, v))
$
以及:
$
S(u) tack (exists y) (exists z) (y != z and L(y, x) and L(z, x)) tack exists y L(y, x) ("使用" exists, and "消去即可")
$
从而:
$
R(u, v), u = v tack exists y L(y, u) tack exists y L(y, v) and L(y, v)
$
总之有:
$
R(u, v), u = v tack (exists y L(y, u) tack exists y L(y, v) and L(y, v)) and (not1 exists w (L(w, u) and L(w, v)))
$
利用重言式 $calA and (not1 calA) -> calB$ 即得原式
===
设论域为:
- 点为 $ZZ_2$ 中的点
- 线为 $ZZ_2$ 中的二元线性方程 $A x + B y + C = 0$ 的零点集($A, B$ 不全为零)
显然论域是有限集

设点 $(x_0, y_0)$ 不在直线 $A x + B y + C = 0$ 上,则有 $A x_0 + B y_0 + C != 0$,考虑直线:
$
A x + B y - (A x_0 + B y_0)
$
则它是不同于且平行于直线 $A x + B y + C = 0$ 的直线,并且过 $(x_0, y_0)$。同时,考虑线性方程组:
$
A' x_0 + B' y_0 + C' = 0\
A' B - A B' = 0
$
系数矩阵为:
$
mat(x_0, y_0, 1; B, -A, 0)
$
由于 $A, B$ 不全为零,解空间维度为一,说明满足条件的直线唯一
==
取经典的平面射影几何,其中任何不相等的两条线都交于一点,因此没有平行线
Loading

0 comments on commit 69b7a32

Please sign in to comment.