-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,134 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum, directLimit | ||
#import "../../template.typ": * | ||
#import "@preview/commute:0.2.0": node, arr, commutative-diagram | ||
|
||
#show: note.with( | ||
title: "作业5", | ||
author: "YHTQ", | ||
date: none, | ||
logo: none, | ||
withOutlined : false, | ||
withTitle :false, | ||
) | ||
(应交时间为4月16日) | ||
#let Supp = math.op("Supp") | ||
#set heading(numbering: none) | ||
= p78 | ||
== 1 | ||
=== i | ||
注意到有递增子模链: | ||
$ | ||
ker mu <= ker mu^2 <= ... <= ker mu^n <= ... | ||
$ | ||
由条件知最终将稳定,可设 $ker mu^n = ker mu^(n+1)$,因此: | ||
$ | ||
mu^(n+1) (m) = 0 <=> mu (mu^n (m)) = 0 <=> mu^n (m) = 0 | ||
$ | ||
然而 $mu$ 是满射,$mu^n$ 也是,进而上式表明 $ker mu = 0$,证毕 | ||
=== ii | ||
注意到有递降子模链: | ||
$ | ||
M >= im mu >= im mu^2 >= ... >= im mu^n >= ... | ||
$ | ||
由条件知最终稳定,可设 $im mu^n = im mu^(n+1) := M'$\ | ||
然而注意到: | ||
$ | ||
im mu^n = mu(im mu^(n-1)) \ | ||
im mu^n = im mu^(n+1) = mu(im mu^(n))\ | ||
mu(im mu^(n-1)) = mu(im mu^(n)) => im mu^(n-1) = im mu^n | ||
$ | ||
(最后利用了 $mu$ 是单射)\ | ||
这表明 $n$ 可以一直降低,最终说明 $im mu = M$,证毕 | ||
== 2 | ||
对 $M$ 的任意子模 $M'$,设: | ||
$ | ||
Sigma = {M'' subset M' | M'' "是有限生成子模"} | ||
$ | ||
条件表明它将有极大元。设极大元为 $M''$,然而往有限生成模中扩充任何元素都还是有限生成的,因此 $M''$ 只能为 $M'$,表明 $M$ 的所有子模都有限生成 | ||
== 3 | ||
由熟知的同构: | ||
$ | ||
M quo N_1 times M quo N_2 tilde.eq M quo N_1 sect N_2 | ||
$ | ||
及有限直积保持 Noether/Artin 知结论成立 | ||
== 4 | ||
此时必有 $M$ 有限生成,进而可设 $M = sum_i A x_i$,有: | ||
$ | ||
Ann(M) = sect_i Ann(x_i)\ | ||
A quo Ann(M) tilde.eq product_i A quo Ann(x_i) tilde.eq product_i A x_i | ||
$ | ||
而 $A x_i$ 作为 Noether 模的子模有限生成,进而 $A quo Ann(x_i)$ 作为有限 $A-$代数是 Noether 的,作为环也是,由上题结论知结果成立 | ||
|
||
若 $M$ 是 Artin 的,结果当然未必,例如设 $p$ 是素数,则 $ZZ[1/p] quo ZZ$ 作为 $ZZ$ 模 Artin,并且没有非零零化子,但 $ZZ$ 不是 Artin 的 | ||
== 5 | ||
注意到子空间 $Y$ 中开集均形如 $A sect Y$,其中 $A$ 是 $Y$ 中开集,当然将满足升链条件。 | ||
|
||
为了证明拟紧,任取一族开覆盖 $union E = X$,考虑: | ||
$ | ||
Sigma = {union E' | E' "是" E "的有限子集"} | ||
$ | ||
$sigma$ 将是开集族,由升链条件,$Sigma$ 有极大元 $E'$,容易验证 $union E' = X$,否则可以再添加一个点的覆盖到 $E'$ 使得覆盖的空间更大,与极大性矛盾 | ||
== 6 | ||
== i) $=>$ iii) | ||
已经证明每个子空间都 Noether,而 Noether 空间都拟紧,因此结论成立 | ||
== iii) $=>$ ii) | ||
显然 | ||
== ii) $=>$ i) | ||
任取开集的升链: | ||
$ | ||
A_1 <= A_2 <= ... <= A_n <= ... | ||
$ | ||
则 ${A_i}$ 构成开子空间 $union_i A_i$ 的开覆盖,将有有限开覆盖。由于这族开集是全序的,相当于只需一个 $A_n$ 即可覆盖,蕴含 $A_m = A_n, forall m >= n$,证毕 | ||
== 7 | ||
设 $Sigma$ 为所有不能写成有限个不可约分支的并的闭子空间,注意到这是一族闭集,假设它非空,由降链条件存在极小元 $Y$。\ | ||
显然 $Y$ 不是空集,任选 $x in Y$ 以及包含它的不可约分支 $Gamma subset Y$,则 $Y - Gamma$ 可写成有限个不可约分支的并,继而再加上 $Gamma$ 便将 $Y$ 写成了有限个不可约分支的并,矛盾!\ | ||
因此原集合是空集 | ||
|
||
进一步,设 $X = union_i X_i$,任取其中一个不可约分支 $C$,将有: | ||
$ | ||
C = union_i (C sect X_i) | ||
$ | ||
然而 $C$ 不能写成其中有限个非空闭集的并,继而: | ||
$ | ||
exists i, C = C sect X_i | ||
$ | ||
再由极大性,$C = X_i$,证毕 | ||
== 8 | ||
显然 $Spec(A)$ 中闭集都是 $V(alpha), alpha$ 是环中理想。理想的升链条件将导出闭集的降链条件,因此 $Spec(A)$ 是 Noether 的 | ||
|
||
反面不成立,例如令 $A = QQ[x_1, x_2, ..., x_n, ...] quo (x_1^2, x_2^2, ..., x_n^2, ...)$,注意到它当然不是 Noether 环,同时 $Spec(A)$ 同胚于 $Spec(A quo Re)$\ | ||
但另一方面,$A$ 中所有不是单位的元素都幂零,因此 $A quo Re tilde.eq QQ$ 是域,素谱是单点集,当然是 Noether 空间 | ||
== 9 | ||
前面已经证明了极小素理想与不可约分支的一一对应,因此结论成立 | ||
== 10 | ||
熟知 Noether 模有限生成,此时有: | ||
$ | ||
Supp(M) = V(Ann(M)) | ||
$ | ||
因此确实是闭集,只需验证其中降链条件。事实上,若存在其中无穷下降的闭集链: | ||
$ | ||
V(Ann(M)) := V(I_0) > V(I_1) > ... > V(I_n) > ... | ||
$ | ||
当然有 $Ann(M) := I_0 < I_1 < ... < I_n$\ | ||
此时,将有上升的子模链: | ||
$ | ||
0 = I_0 M <= I_1 M <= ... <= I_n M <= ... | ||
$ | ||
注意到: | ||
$ | ||
Supp(M quo I_n M) = V(I_n + Ann(M)) = V(I_n) | ||
$ | ||
因此 | ||
$ | ||
I_n = I_(n+1) => Supp(M quo I_n M) = Supp(M quo I_(n+1) M) => V(I_n) = V(I_(n+1)) | ||
$ | ||
从而子模升链中每项严格上升,与 Noether 模条件矛盾! | ||
|
Oops, something went wrong.