Skip to content

Commit

Permalink
5.10
Browse files Browse the repository at this point in the history
  • Loading branch information
yhtq committed May 10, 2024
1 parent 971959f commit 9c4d4bf
Show file tree
Hide file tree
Showing 23 changed files with 4,681 additions and 77 deletions.
93 changes: 54 additions & 39 deletions template.typ
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,6 @@

#import "@preview/lemmify:0.1.4": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram
#let (
theorem, lemma, corollary,
remark, proposition, example, definition,
proof, rules: thm-rules
) = default-theorems("thm-group", lang: "en")
#let (answer) = default-theorems("thm-group-a", lang: "en")
$1 + 1$
#let TODO = [#text("TODO", fill: red)]
#let der(y, x) = $(d #y) / (d #x)$
Expand All @@ -29,7 +23,7 @@ $1 + 1$
#let Gal = math.op("Gal")
#let HomoCoor = math.vec.with(delim: "[")
#let autoHomoCoor3 = autoVec3.with(delim: "[")
#let Det(arr) = mat(delim: "|", ..arr)
#let Det = math.mat.with(delim: "|")
#let Hom = math.op("Hom")
#let Proj = math.op("Proj")
#let Spec = math.op("Spec")
Expand All @@ -54,7 +48,7 @@ $1 + 1$
#let ei(x) = $e^(i #x)$
#let eiB(x) = $e^(#x i)$ // i Behind
#let sgn = math.op("sgn")
#let Res = math.op("Res")
#let Res(f, i) = $op("Res") (#f \; #i)$
#let lcm = math.op("lcm")
#let Der = math.op("Der")
#let Arg = math.op("Arg")
Expand Down Expand Up @@ -176,6 +170,8 @@ $1 + 1$
parbreak()
}
)


#let noneNameChecker(name) = {
if name == [] {
none
Expand All @@ -184,14 +180,31 @@ $1 + 1$
name
}
}
#let theo = theorem
#let lem = lemma
#let cor = corollary
#let prop = proposition
#let def = definition
#let ex = example
#let rem = remark
#let pr = proof
#let (
theorem: theo, lemma: lem, corollary: cor,
remark: rem, proposition: prop, example:ex , definition:def,
proof: pr, rules: thm-rules
) = default-theorems("thm-group", lang: "en")
#let (
theorem: theo1, lemma: lem1, corollary: cor1,
remark: rem1, proposition: prop1, example:ex1 , definition:def1,
proof: pr1, rules: thm-rules1
) = default-theorems("thm-group-linear", lang: "en", thm-numbering: thm-numbering-linear)
#let my-ans-style(
thm-type, name, number, body
) = block(spacing: 11.5pt, {
set enum(numbering: "Step 1.1.")
body
linebreak()
h(1fr)
box(scale(160%, origin: bottom + right, sym.square.stroked))
})
#let my-styling = (
thm-styling: my-ans-style,
thm-numbering: thm-numbering-linear
)
#let (answer, rules:ans-rules) = new-theorems("thm-ans", ("answer": "Answer"), ..my-styling)

#let _convert(f, name, body) = f(name: noneNameChecker(name))[
#body
#parbreak()
Expand All @@ -209,9 +222,23 @@ $1 + 1$
]
#linebreak()
]
#let lemma1 = lem.with(
numbering: none
)



#let theoremLinear(name, body) = _convert(theo1, name, body)
#let lemmaLinear(name, body) = _convert(lem1, name, body)
#let corollaryLinear(name, body) = _convert(cor1, name, body)
#let propositionLinear(name, body) = _convert(prop1, name, body)
#let exampleLinear(name, body) = _convert(ex1, name, body)
#let remarkLinear(name, body) = _convert(rem1, name, body)
#let definitionLinear(name, body) = _convert(def1, name, body)
#let proofLinear(body) = [#pr1[
#set text(size: 10pt)
#body
]
#linebreak()
]

//#let theorem = base_env.with(
// type: "Theorem",
// fg: blue,
Expand Down Expand Up @@ -271,19 +298,6 @@ $1 + 1$
// h(1fr)
// box(scale(160%, origin: bottom + right, sym.square.stroked))
//})
#let my-ans-style(
thm-type, name, number, body
) = block(spacing: 11.5pt, {
set enum(numbering: "Step 1.1.")
body
linebreak()
h(1fr)
box(scale(160%, origin: bottom + right, sym.square.stroked))
})
#let my-styling = (
thm-styling: my-ans-style
)
#let (answer, rules:ans-rules) = new-theorems("thm-ans", ("answer": "Answer"), ..my-styling)

#let note(title: "Note title", author: "Name", logo: none, date: none,
preface: none, code_with_line_number: true, withOutlined: true, withTitle: true, withHeadingNumbering: true, body) = {
Expand All @@ -307,22 +321,22 @@ $1 + 1$
}
show: thm-rules
show: ans-rules
show: thm-rules1
show math.equation: set text(font: ("Noto Serif CJK SC", "New Computer Modern Math"))
set math.equation(numbering: "(1)")

set math.equation(numbering: num =>
"(" + (counter(heading).get() + (num,)).map(str).join(".") + ")") if withHeadingNumbering == true
let headingfunc = (it => it)
if withHeadingNumbering == false {
set math.equation(numbering: "(1)")
}
else {
show heading: it => {
headingfunc = (it => {
counter(math.equation).update(0)
it
}
set math.equation(numbering: "1.")
set math.equation(numbering: num =>
"(" + (counter(heading).get() + (num,)).map(str).join(".") + ")")
set math.equation(numbering: "(1)")
})
}
show heading: headingfunc
// set ref(supplement: it => {
// let eq = math.equation
// let el = it
Expand Down Expand Up @@ -386,6 +400,7 @@ $1 + 1$
set par(justify: true, first-line-indent: 22pt)

set heading(numbering: "1.")
set heading(numbering: none) if withHeadingNumbering == false

// Code
show raw.where(block: false): box.with(
Expand Down
14 changes: 7 additions & 7 deletions 代数学二/main.typ
Original file line number Diff line number Diff line change
Expand Up @@ -2560,7 +2560,7 @@
]
#proof[
定义 $l(M)$$M$ 的合成列中的最小长度
#lemma1[
#lemmaLinear[][
$N$$M$ 的真子模,则 $l(N) < l(M)$
]
#proof[
Expand All @@ -2575,7 +2575,7 @@
因此这些商模要么是 $0$,要么是单模。去掉所有的 $0$ 之后便成为长度为 $l' <= l(M)$ 的合成列\
同时,假设 $l= l(M)$,表明上面的 $N_(i-1) quo N_i tilde.eq M_(i-1) quo M_i$,可以递归证明 $M_i = N_i$,这是荒谬的
]
#lemma1[
#lemmaLinear[][
$M$ 中任何一个子模链的长度不超过 $l(M)$
]
#proof[
Expand Down Expand Up @@ -3386,7 +3386,7 @@
#proof[
首先,$Sigma$ 非空(可以取 $(0, 0)$),且满足 Zoun 引理条件,进而存在极大元\
$B$ 是一个极大元
#lemma1[
#lemmaLinear[][
$B$ 是局部环,且 $m = ker(f)$ 是极大理想
]
#proof[
Expand All @@ -3396,7 +3396,7 @@
$
当然 $f$ 可以延拓到 $B_m$ 上,而由极大性得 $B_m = B$,证毕
]
#lemma1[
#lemmaLinear[][
任取 $x in k - {0}, B[x] subset k, m[x] := m B[x]$ ,则以下两者至少有一个成立:
- $m[x] subset.not B[x]$
- $m[Inv(x)] subset.not B[Inv(x)]$
Expand Down Expand Up @@ -3498,13 +3498,13 @@
+ $exists x in A$ 使得每个非零理想都形如 $(x^k), k >= 0$
]
#proof[
#lemma1[
#lemmaLinear[][
$I$ 是非平凡理想,则存在 $n > 0, m^n subset I$
]
#proof[
注意到 $sqrt(I)$ 是包含 $I$ 的所有素理想的交,由 $dim A = 1$ 知它就是 $m$,再由 Noether 知 $m$ 有限生成,考虑生成元不难发现结论成立
]
#lemma1[
#lemmaLinear[][
$m^k != m^(k+1)$
]
#proof[
Expand Down Expand Up @@ -4131,7 +4131,7 @@
- 若 $G(M)$ 诺特,则 $M$ 诺特
]
#proof[
#lemma1[
#lemmaLinear[][
$phi: A -> B$ 是 filtered 群间的同态,诱导 $hat(phi): hat(A) -> hat(B), G(phi) : G(A) -> G(B)$,则:
- $G(phi)$ 是单射给出 $hat(phi)$ 是单射
- $G(phi)$ 是满射给出 $hat(phi)$ 是满射
Expand Down
11 changes: 11 additions & 0 deletions 代数学二/matin test.typ
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
#import "../template.typ": note
// Take a look at the file `template.typ` in the file panel
// to customize this template and discover how it works.
#show: note.with(
title: "代数学二",
author: "YHTQ",
date: none,
logo: none,
)
#include "章节/上半学期.typ"
#include "章节/下半学期.typ"
4 changes: 2 additions & 2 deletions 代数学二/作业/hw3.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[]
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down Expand Up @@ -247,7 +247,7 @@
P = union.big_i im(z_i)
$
\
#lemma1[
#lemmaLinear[][
$
ker g = union_i y_i (ker g_i)
$
Expand Down
4 changes: 2 additions & 2 deletions 代数学二/作业/hw4.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[]
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down Expand Up @@ -146,7 +146,7 @@
证毕

对于第二个事实,先证明:
#lemma1[
#lemmaLinear[][
$S$ 是极大元当且仅当 $Inv(S) A$ 的幂零根是唯一的素理想
]
#proof[
Expand Down
4 changes: 2 additions & 2 deletions 代数学二/作业/hw5.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[], tensorProduct, directSum
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down Expand Up @@ -269,7 +269,7 @@
id compose (X -> M') = pi compose sigma compose (X -> M') = pi compose sigma' compose (X -> M')
$
$pi compose sigma', id$ 都是模自同态,自由模的唯一性将给出 $pi compose sigma' = id$\
#lemma1[
#lemmaLinear[][
$g: M' -> M, f : M -> M'$,则有:
$
f compose g = id => M tilde.eq ker f directSum im g
Expand Down
2 changes: 1 addition & 1 deletion 代数学二/作业/hw6.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum, directLimit
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[], tensorProduct, directSum, directLimit
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down
2 changes: 1 addition & 1 deletion 代数学二/作业/hw7.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum, directLimit
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[], tensorProduct, directSum, directLimit
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down
4 changes: 2 additions & 2 deletions 代数学二/作业/hw8.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum, directLimit
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[], tensorProduct, directSum, directLimit
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down Expand Up @@ -99,7 +99,7 @@
A quo (p sect A) subset C quo (p sect C) subset B quo p
$
且都是整环,由上题结论得 $overline(f), overline(g)$ 的所有系数落在 $A quo (p sect A)$ 的整闭包中,进而在其上整。\
#lemma1[
#lemmaLinear[][
$x in B$ 且任取素理想 $p in Spec(B)$ 均有 $overline(x) in B quo p$$A quo (p sect A)$ 上整,则 $x$$A$ 上整
]
#proof[
Expand Down
4 changes: 2 additions & 2 deletions 代数学二/作业/hw9.typ
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemma1, tensorProduct, directSum, directLimit
#import "../../template.typ": proof, note, corollary, lemma, theorem, definition, example, remark, proposition,der, partialDer, Spec, AModule, lemmaLinear[], tensorProduct, directSum, directLimit
#import "../../template.typ": *
#import "@preview/commute:0.2.0": node, arr, commutative-diagram

Expand Down Expand Up @@ -68,7 +68,7 @@
若这个事实成立,则极大理想 $alpha$ 对应的 $Z(alpha)$ 非空,结合极大性知只能是单点集,如此立得 $alpha = m_x$ 也即结论成立。\
然而看起来上面的事实并不容易从上题结论推出(何况上题第二个结论已经利用了希尔伯特零点定理的结果)
== 18
#lemma1[
#lemmaLinear[][
$A$ 是唯一分解整环,则 $A$ 是整闭的
]
#proof[
Expand Down
Empty file added 代数学二/章节/test.typ
Empty file.
Loading

0 comments on commit 9c4d4bf

Please sign in to comment.