Skip to content

Releases: zjykzj/YOLOv5

UPDATE PRETRAINED

14 Aug 12:43
Compare
Choose a tag to compare
UPDATE PRETRAINED Pre-release
Pre-release
Model size
(pixels)
dataset
mAPval
50-95
mAPval
50
Speed
PyTorch RTX3090
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5x 640 COCO 48.1 66.7 19.7 86.71 205.5
YOLOv5l 640 COCO 46.2 65.2 11.7 46.53 109.0
YOLOv5m 640 COCO 42.9 62.1 5.0 21.17 48.9
YOLOv5s 640 COCO 34.7 53.8 3.6 7.23 16.4
YOLOv5n 640 COCO 24.4 41.3 3.5 1.87 4.5
YOLOv3 640 COCO 43.6 63.7 8.0 61.92 155.9
YOLOv5s 640 VOC 46.8 73.8 2.3 7.06 15.9
YOLOv3 640 VOC 56.9 81.9 7.1 61.60 154.9
YOLOv3-Tiny 640 VOC 25.3 54.2 1.9 8.71 13.0
Model size
(pixels)
acc
top1
acc
top5
Training
90 epochs
4xRTX3090 (hours)
Speed
PyTorch RTX3090
(ms)
params
(M)
FLOPs
@224 (B)
YOLOv5s-cls 224 64.9 86.0 38.831 0.3 6.45 11.4
YOLOv3-cls 224 68.3 88.2 56.517 1.0 16.81 98.6
ResNet50 224 69.3 88.2 94.422 0.4 25.6 8.5
EfficientNet_b0 224 71.0 90.2 77.515 0.5 5.3 1.0

a Tiny Version of YOLOv5

07 Aug 13:42
Compare
Choose a tag to compare
Pre-release
  1. Support training/evaluation/prediction/deployment of YOLOv5 detection model;
  2. Support configuration files for the original YOLOv5 project, including data/*.yaml, hyps/*.yaml, models/*.yaml;
  3. Provided a pre training model for YOLOv5n/YOLOv5s/YOLOv3 based on the coco dataset;
  4. Provided a pre training model for YOLOv5s/YOLOv3/YOLOv3-Tiny based on VOC dataset.
Model size
(pixels)
dataset
mAPval
50-95
mAPval
50
Speed
PyTorch RTX3090
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 COCO 24.4 41.3 3.5 1.87 4.5
YOLOv5s 640 COCO 34.7 53.8 3.6 7.23 16.4
YOLOv3 640 COCO 43.6 63.7 8.0 61.92 155.9
Model size
(pixels)
dataset
mAPval
50-95
mAPval
50
Speed
PyTorch RTX3090
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5s 640 VOC 46.8 73.8 2.3 7.06 15.9
YOLOv3 640 VOC 56.9 81.9 7.1 61.60 154.9
YOLOv3-Tiny 640 VOC 25.3 54.2 1.9 8.71 13.0