Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add SFR-Mstars plane python script #21

Open
wants to merge 3 commits into
base: devel
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
294 changes: 294 additions & 0 deletions standard_plots/sfr_mstars_panel.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
#
# ICRAR - International Centre for Radio Astronomy Research
# (c) UWA - The University of Western Australia, 2018
# Copyright by UWA (in the framework of the ICRAR)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""SMF plots"""

import collections
import functools
import logging
import math

import numpy as np

import common
import utilities_statistics as us

import matplotlib.gridspec as gridspec
import matplotlib.patheffects as pe
from astropy.cosmology import FlatLambdaCDM


observation = collections.namedtuple('observation', 'label x y yerrup yerrdn err_absolute')

logger = logging.getLogger(__name__)

##################################
# Constants
GyrToYr = 1e9
Zsun = 0.0127
XH = 0.72
MpcToKpc = 1e3

##################################
# Mass function initialization
mlow = 5
mupp = 14
dm = 0.125
mbins = np.arange(mlow,mupp,dm)
xmf = mbins + dm/2.0
imf = 'cha'

mlow2 = 5
mupp2 = 14
dm2 = 0.3
mbins2 = np.arange(mlow2,mupp2,dm2)
xmf2 = mbins2 + dm2/2.0

mlow3 = 5
mupp3 = 14
dm3 = 0.2
mbins3 = np.arange(mlow3,mupp3,dm3)
xmf3 = mbins3 + dm3/2.0

ssfrlow = -6
ssfrupp = 4
dssfr = 0.2
ssfrbins = np.arange(ssfrlow,ssfrupp,dssfr)
xssfr = ssfrbins + dssfr/2.0

sfrlow = -3
sfrupp = 1.5
dsfr = 0.2
sfrbins = np.arange(sfrlow,sfrupp,dsfr)
xsfr = sfrbins + dsfr/2.0

size1 = 27
size2 = 9
stext = 40
fsize = 21
saxis = 27
linw1 = 6
linw2 = 2
linw3 = 30
linw4 = 35
spad = 15
spadx = 8
spady = 8
col = 'dodgerblue'

logMstars = np.linspace(8.5,11.5,20)

def sfms_fit_popesso23(t):
angel-chandro marked this conversation as resolved.
Show resolved Hide resolved
# fit in the stellar mass range (10^8.5-10^11.5Msun)
# t is the age of the Universe in Gyr
logMstars = np.linspace(8.5,11.5,20)
a0 = 0.20
a1 = -0.034
b0 = -26.134
b1 = 4.722
b2 = -0.1925
return (a1*t + b1)*logMstars + b2*(logMstars)**2 + (b0 + a0*t)

def sfms_fit_schreiber15(m,z):
# fit in the stellar mass range (10^8.5-10^11.5Msun)
# z is redshift
r = np.log10(1 + z)
m = np.log10(m/1e9)
m0 = 0.5
a0 = 1.5
a1 = 0.3
m1 = 0.36
a2 = 2.5
return m - m0 + a0*r - a1*(np.maximum.reduce([np.zeros(np.shape(m)),m - m1 - a2*r]))**2


def plot_sfms(plt, outdir, h0, omega_m, omega_b, obsdir, mainseqsf_1):

cosmo = FlatLambdaCDM(H0=h0*100, Om0=omega_m, Ob0=omega_b)
LBT_end = cosmo.lookback_time(1e10).value
LBT_0 = cosmo.lookback_time(0).value
LBT_1 = cosmo.lookback_time(1).value
LBT_2 = cosmo.lookback_time(2).value

fig = plt.figure(figsize=(size1,size2))
gs = gridspec.GridSpec(1, 3, height_ratios=[1], width_ratios=[1,1,1])
gs.update(wspace=0, hspace=0)

xtit="$\\rm log_{10} (\\rm M_{\\star}/M_{\odot})$"
ytit="$\\rm log_{10}(\\rm SFR/M_{\odot} yr^{-1})$"
ytit2=r'$\mathrm{log}_{10}\ \frac{\mathrm{SFR_{\mathrm{after}}}}{\mathrm{SFR}_{\mathrm{before}}}$'
xmin, xmax, ymin, ymax = 8, 12.5, -3.3, 3.3
ymin2, ymax2 = -3, 3
xleg = xmax - 0.9 * (xmax-xmin)
yleg = ymax - 0.5 * (ymax-ymin)

ax = plt.subplot(gs[0])
angel-chandro marked this conversation as resolved.
Show resolved Hide resolved
common.prepare_ax(ax, xmin, xmax, ymin, ymax, xtit, ytit, locators=(0.1, 1, 0.1, 1))

index = 0
ind = np.where(mainseqsf_1[index,0,:] != 0)
yp = mainseqsf_1[index,0,ind]
ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind]
yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind]
ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True)
ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()])

ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_0),color='orange',linestyle='dashed', linewidth = 5, label="Popesso+23 MS fit")

#GAMA data at z<0.06
#CATAID StellarMass_bestfit StellarMass_50 StellarMass_16 StellarMass_84 SFR_bestfit SFR_50 SFR_16 SFR_84 Zgas_bestfit Zgas_50 Zgas_16 Zgas_84 DustMass_bestfit DustMass_50 DustMass_16 DustMass_84 DustLum_50 DustLum_16 DustLum_84 uberID redshift
ms_gama, sfr_gama = common.load_observation(obsdir, 'GAMA/ProSpect_Claudia.txt', [2,6])
ind = np.where(sfr_gama < 1e-3)
sfr_gama[ind] = 1e-3
#ax.hexbin(np.log10(ms_gama), np.log10(sfr_gama), gridsize=(20,20), mincnt=5) #, cmap = 'plasma') #, **contour_kwargs)
#us.density_contour_reduced(ax, np.log10(ms_gama), np.log10(sfr_gama), 25, 25) #, **contour_kwargs)

bin_it = functools.partial(us.wmedians, xbins=xmf, nmin=10)
toplot = bin_it(x=np.log10(ms_gama), y=np.log10(sfr_gama))
ind = np.where(toplot[0,:] != 0)
yp = toplot[0,ind]
yup = toplot[2,ind] + toplot[0,ind]
ydn = toplot[0,ind] - toplot[1,ind]
ax.fill_between(xmf[ind], ydn[0], yup[0], color='Maroon', alpha = 0.1, linestyle='solid', linewidth = 2)
ax.plot(xmf[ind], yp[0],color='Maroon',linestyle='dashed', linewidth = 5, label="Bellstedt+20")

# individual massive galaxies from Terrazas+17
ms, sfr, upperlimflag = common.load_observation(obsdir, 'BHs/MBH_host_gals_Terrazas17.dat', [0,1,2])
ind = np.where(ms > 11.3)
ax.errorbar(ms[ind], sfr[ind], xerr=0.2, yerr=0.3, ls='None', mfc='None', ecolor = 'r', mec='r',marker='s',label="Terrazas+17",markersize=8,elinewidth=2)
ind = np.where((upperlimflag == 1) & (ms > 11.3))
for a,b in zip (ms[ind], sfr[ind]):
ax.arrow(a, b, 0, -0.3, head_width=0.05, head_length=0.1, fc='r', ec='r')


ax.set_xlim(xmin,xmax)
ax.set_ylim(ymin,ymax)
ax.set_xticks(np.arange(8,13,1))
ax.set_xticks(np.arange(8,13,0.2),minor=True)
ax.set_xlabel(xtit,fontsize=linw3,labelpad=spadx)
ax.set_yticks(np.arange(-3,4,1))
ax.set_yticks(np.arange(-3,3.4,0.2),[],minor=True)
ax.text(xleg,yleg, 'z=0' ,fontsize=stext)
ax.tick_params(axis='both', which='major', labelsize=saxis)
ax.set_ylabel(ytit,fontsize=linw3,labelpad=spady)
# Legend
plt.tight_layout()
ax.legend(loc=2, prop={'size': fsize}, frameon=False)

yleg = ymax - 0.25 * (ymax-ymin)

ax = plt.subplot(gs[1])
common.prepare_ax(ax, xmin, xmax, ymin, ymax, xtit, '', locators=(0.1, 1, 0.1, 1))
ax.set_yticks([])
index = 1
ind = np.where(mainseqsf_1[index,0,:] != 0)
yp = mainseqsf_1[index,0,ind]
ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind]
yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind]
ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True)
ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()])
ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_1),color='orange',linestyle='dashed', linewidth = 5)
mstars = np.logspace(8,13,100)
#ax.plot(np.log10(mstars),sfms_fit_schreiber15(mstars,1),color='olive',linestyle='dashed', linewidth = 5, label="Schreiber+15 MS fit")
ax.set_xlim(xmin,xmax)
ax.set_ylim(ymin,ymax)
ax.set_xticks(np.arange(8,13,1))
ax.set_xticks(np.arange(8,13,0.2),minor=True)
ax.set_xlabel(xtit,fontsize=linw3,labelpad=spadx)
ax.set_yticks(np.arange(-3,4,1),[])
ax.set_yticks(np.arange(-3,3.4,0.2),[],minor=True)
ax.text(xleg,yleg, 'z=1' ,fontsize=stext)
ax.tick_params(axis='both', which='major', labelsize=saxis)
# Legend
plt.tight_layout()
ax.legend(loc=2, prop={'size': fsize}, frameon=False)

yleg = ymax - 0.25 * (ymax-ymin)

ax = plt.subplot(gs[2])
common.prepare_ax(ax, xmin, xmax, ymin, ymax, xtit, '', locators=(0.1, 1, 0.1, 1))
ax.set_yticks([])
index = 2
ind = np.where(mainseqsf_1[index,0,:] != 0)
yp = mainseqsf_1[index,0,ind]
ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind]
yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind]
ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True)
ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, label="Shark before", path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()])
ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_2),color='orange',linestyle='dashed', linewidth = 5, label="Popesso+23")
#ax.plot(np.log10(mstars),sfms_fit_schreiber15(mstars,2),color='olive',linestyle='dashed', linewidth = 5, label="Schreiber+15")
ax.set_xlim(xmin,xmax)
ax.set_ylim(ymin,ymax)
ax.set_xticks(np.arange(8,13,1))
ax.set_xticks(np.arange(8,13,0.2),minor=True)
ax.set_xlabel(xtit,fontsize=linw3,labelpad=spadx)
ax.set_yticks(np.arange(-3,4,1),[])
ax.set_yticks(np.arange(-3,3.4,0.2),[],minor=True)
ax.text(xleg,yleg, 'z=2' ,fontsize=stext)
ax.tick_params(axis='both', which='major', labelsize=saxis)
# Legend
plt.tight_layout()

common.savefig(outdir, fig, 'SFR_Mstars_plot_panel.pdf')


def prepare_data(hdf5_data, index, mainseqsf):

(h0, volh, sfr_disk, sfr_burst, mdisk, mbulge) = hdf5_data

bin_it_2sigma = functools.partial(us.wmedians_2sigma, xbins=xmf)

mass = np.zeros(shape = len(mdisk))
ind = np.where((mdisk+mbulge) > 0.0)
mass[ind] = np.log10(mdisk[ind] + mbulge[ind]) - np.log10(float(h0))
logger.debug('number of galaxies with mstars>0 and max mass: %d, %d', len(mass[ind]), max(mass[ind]))

ind = np.where((sfr_disk+sfr_burst > 0) & (mdisk+mbulge > 0) & ((sfr_disk+sfr_burst)/(mdisk+mbulge) > 0))
mainseqsf[index,:] = bin_it_2sigma(x=mass[ind], y=np.log10((sfr_disk[ind]+sfr_burst[ind])/h0/GyrToYr))

return mass

def main(modeldir, outdir, redshift_table, subvols, obsdir):

model = modeldir.split('/')[-1]
sim = modeldir.split('/')[-2]

zlist = (0, 0.5, 1, 2, 3, 4)

plt = common.load_matplotlib()

mainseqsf = np.zeros(shape = (len(zlist), 3, len(xmf)))

fields = {'galaxies': ('sfr_disk', 'sfr_burst', 'mstars_disk', 'mstars_bulge')}
fields_c = {'cosmology': ('omega_m', 'omega_b')}

for index, snapshot in enumerate(redshift_table[zlist]):
hdf5_data = common.read_data(modeldir, snapshot, fields, subvols)
mass = prepare_data(hdf5_data, index, mainseqsf)

subvol = set()
subvol.add(0)
hdf5_data = common.read_data(modeldir, redshift_table[zlist[0]], fields_c, subvol)
(h0, volh, omega_m, omega_b) = hdf5_data

plot_sfms(plt, outdir, h0, omega_m, omega_b, obsdir, mainseqsf)



if __name__ == '__main__':
main(*common.parse_args())